Results 1  10
of
404,215
An iterative thresholding algorithm for linear inverse problems with a sparsity constraint
, 2008
"... ..."
The sources and consequences of embeddedness for the economic performance of organizations: The network effect
 American Sociological Review
, 1996
"... In this paper, I attempt to advance the concept of embeddedness beyond the level of a programmatic statement by developing a formulation that specifies how embeddedness and network structure affect economic action. On the basis of existing theory and original ethnographies of 23 apparel firms, I dev ..."
Abstract

Cited by 709 (8 self)
 Add to MetaCart
develop a systematic scheme that more fully demarcates the unique features, functions, and sources of embeddedness. From this scheme, I derive a set of refutable implications and test their plausibility, using another data set on the network ties of all better dress apparel firms in the New York apparel
On Spectral Clustering: Analysis and an algorithm
 ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS
, 2001
"... Despite many empirical successes of spectral clustering methods  algorithms that cluster points using eigenvectors of matrices derived from the distances between the points  there are several unresolved issues. First, there is a wide variety of algorithms that use the eigenvectors in slightly ..."
Abstract

Cited by 1697 (13 self)
 Add to MetaCart
Despite many empirical successes of spectral clustering methods  algorithms that cluster points using eigenvectors of matrices derived from the distances between the points  there are several unresolved issues. First, there is a wide variety of algorithms that use the eigenvectors
Greedy Function Approximation: A Gradient Boosting Machine
 Annals of Statistics
, 2000
"... Function approximation is viewed from the perspective of numerical optimization in function space, rather than parameter space. A connection is made between stagewise additive expansions and steepest{descent minimization. A general gradient{descent \boosting" paradigm is developed for additi ..."
Abstract

Cited by 951 (12 self)
 Add to MetaCart
for additive expansions based on any tting criterion. Specic algorithms are presented for least{squares, least{absolute{deviation, and Huber{M loss functions for regression, and multi{class logistic likelihood for classication. Special enhancements are derived for the particular case where the individual
Boosting a Weak Learning Algorithm By Majority
, 1995
"... We present an algorithm for improving the accuracy of algorithms for learning binary concepts. The improvement is achieved by combining a large number of hypotheses, each of which is generated by training the given learning algorithm on a different set of examples. Our algorithm is based on ideas pr ..."
Abstract

Cited by 516 (15 self)
 Add to MetaCart
upper bounds known today. We show that the number of hypotheses that are combined by our algorithm is the smallest number possible. Other outcomes of our analysis are results regarding the representational power of threshold circuits, the relation between learnability and compression, and a method
Live Migration of Virtual Machines
 In Proceedings of the 2nd ACM/USENIX Symposium on Networked Systems Design and Implementation (NSDI
, 2005
"... Migrating operating system instances across distinct physical hosts is a useful tool for administrators of data centers and clusters: It allows a clean separation between hardware and software, and facilitates fault management, load balancing, and lowlevel system maintenance. By carrying out the ma ..."
Abstract

Cited by 613 (14 self)
 Add to MetaCart
Migrating operating system instances across distinct physical hosts is a useful tool for administrators of data centers and clusters: It allows a clean separation between hardware and software, and facilitates fault management, load balancing, and lowlevel system maintenance. By carrying out
For Most Large Underdetermined Systems of Linear Equations the Minimal ℓ1norm Solution is also the Sparsest Solution
 Comm. Pure Appl. Math
, 2004
"... We consider linear equations y = Φα where y is a given vector in R n, Φ is a given n by m matrix with n < m ≤ An, and we wish to solve for α ∈ R m. We suppose that the columns of Φ are normalized to unit ℓ 2 norm 1 and we place uniform measure on such Φ. We prove the existence of ρ = ρ(A) so that ..."
Abstract

Cited by 560 (10 self)
 Add to MetaCart
. In contrast, heuristic attempts to sparsely solve such systems – greedy algorithms and thresholding – perform poorly in this challenging setting. The techniques include the use of random proportional embeddings and almostspherical sections in Banach space theory, and deviation bounds for the eigenvalues
The SWISSMODEL Workspace: A webbased environment for protein structure homology modelling
 BIOINFORMATICS
, 2005
"... Motivation: Homology models of proteins are of great interest for planning and analyzing biological experiments when no experimental threedimensional structures are available. Building homology models requires specialized programs and uptodate sequence and structural databases. Integrating all re ..."
Abstract

Cited by 555 (5 self)
 Add to MetaCart
required tools, programs and databases into a single webbased workspace facilitates access to homology modelling from a computer with web connection without the need of downloading and installing large program packages and databases. Results: SWISSMODEL Workspace is a webbased integrated service
Bayes Factors
, 1995
"... In a 1935 paper, and in his book Theory of Probability, Jeffreys developed a methodology for quantifying the evidence in favor of a scientific theory. The centerpiece was a number, now called the Bayes factor, which is the posterior odds of the null hypothesis when the prior probability on the null ..."
Abstract

Cited by 1766 (74 self)
 Add to MetaCart
is onehalf. Although there has been much discussion of Bayesian hypothesis testing in the context of criticism of P values, less attention has been given to the Bayes factor as a practical tool of applied statistics. In this paper we review and discuss the uses of Bayes factors in the context of five
Probabilistic Visual Learning for Object Representation
, 1996
"... We present an unsupervised technique for visual learning which is based on density estimation in highdimensional spaces using an eigenspace decomposition. Two types of density estimates are derived for modeling the training data: a multivariate Gaussian (for unimodal distributions) and a Mixtureof ..."
Abstract

Cited by 705 (15 self)
 Add to MetaCart
We present an unsupervised technique for visual learning which is based on density estimation in highdimensional spaces using an eigenspace decomposition. Two types of density estimates are derived for modeling the training data: a multivariate Gaussian (for unimodal distributions) and a Mixture
Results 1  10
of
404,215