Results 1  10
of
5,959
Policy gradient methods for reinforcement learning with function approximation.
 In NIPS,
, 1999
"... Abstract Function approximation is essential to reinforcement learning, but the standard approach of approximating a value function and determining a policy from it has so far proven theoretically intractable. In this paper we explore an alternative approach in which the policy is explicitly repres ..."
Abstract

Cited by 439 (20 self)
 Add to MetaCart
Abstract Function approximation is essential to reinforcement learning, but the standard approach of approximating a value function and determining a policy from it has so far proven theoretically intractable. In this paper we explore an alternative approach in which the policy is explicitly
Markov games as a framework for multiagent reinforcement learning
 IN PROCEEDINGS OF THE ELEVENTH INTERNATIONAL CONFERENCE ON MACHINE LEARNING
, 1994
"... In the Markov decision process (MDP) formalization of reinforcement learning, a single adaptive agent interacts with an environment defined by a probabilistic transition function. In this solipsistic view, secondary agents can only be part of the environment and are therefore fixed in their behavior ..."
Abstract

Cited by 601 (13 self)
 Add to MetaCart
In the Markov decision process (MDP) formalization of reinforcement learning, a single adaptive agent interacts with an environment defined by a probabilistic transition function. In this solipsistic view, secondary agents can only be part of the environment and are therefore fixed
Property Testing and its connection to Learning and Approximation
"... We study the question of determining whether an unknown function has a particular property or is fflfar from any function with that property. A property testing algorithm is given a sample of the value of the function on instances drawn according to some distribution, and possibly may query the fun ..."
Abstract

Cited by 475 (67 self)
 Add to MetaCart
the function on instances of its choice. First, we establish some connections between property testing and problems in learning theory. Next, we focus on testing graph properties, and devise algorithms to test whether a graph has properties such as being kcolorable or having a aeclique (clique of density ae
Hierarchical Reinforcement Learning with the MAXQ Value Function Decomposition
 Journal of Artificial Intelligence Research
, 2000
"... This paper presents a new approach to hierarchical reinforcement learning based on decomposing the target Markov decision process (MDP) into a hierarchy of smaller MDPs and decomposing the value function of the target MDP into an additive combination of the value functions of the smaller MDPs. Th ..."
Abstract

Cited by 443 (6 self)
 Add to MetaCart
This paper presents a new approach to hierarchical reinforcement learning based on decomposing the target Markov decision process (MDP) into a hierarchy of smaller MDPs and decomposing the value function of the target MDP into an additive combination of the value functions of the smaller MDPs
Generalization in Reinforcement Learning: Successful Examples Using Sparse Coarse Coding
 Advances in Neural Information Processing Systems 8
, 1996
"... On large problems, reinforcement learning systems must use parameterized function approximators such as neural networks in order to generalize between similar situations and actions. In these cases there are no strong theoretical results on the accuracy of convergence, and computational results have ..."
Abstract

Cited by 433 (20 self)
 Add to MetaCart
On large problems, reinforcement learning systems must use parameterized function approximators such as neural networks in order to generalize between similar situations and actions. In these cases there are no strong theoretical results on the accuracy of convergence, and computational results
Generalization in Reinforcement Learning: Safely Approximating the Value Function
 Advances in Neural Information Processing Systems 7
, 1995
"... To appear in: G. Tesauro, D. S. Touretzky and T. K. Leen, eds., Advances in Neural Information Processing Systems 7, MIT Press, Cambridge MA, 1995. A straightforward approach to the curse of dimensionality in reinforcement learning and dynamic programming is to replace the lookup table with a genera ..."
Abstract

Cited by 307 (4 self)
 Add to MetaCart
To appear in: G. Tesauro, D. S. Touretzky and T. K. Leen, eds., Advances in Neural Information Processing Systems 7, MIT Press, Cambridge MA, 1995. A straightforward approach to the curse of dimensionality in reinforcement learning and dynamic programming is to replace the lookup table with a
Residual Algorithms: Reinforcement Learning with Function Approximation
 In Proceedings of the Twelfth International Conference on Machine Learning
, 1995
"... A number of reinforcement learning algorithms have been developed that are guaranteed to converge to the optimal solution when used with lookup tables. It is shown, however, that these algorithms can easily become unstable when implemented directly with a general functionapproximation system, such ..."
Abstract

Cited by 307 (6 self)
 Add to MetaCart
A number of reinforcement learning algorithms have been developed that are guaranteed to converge to the optimal solution when used with lookup tables. It is shown, however, that these algorithms can easily become unstable when implemented directly with a general functionapproximation system
Apprenticeship Learning via Inverse Reinforcement Learning
 In Proceedings of the Twentyfirst International Conference on Machine Learning
, 2004
"... We consider learning in a Markov decision process where we are not explicitly given a reward function, but where instead we can observe an expert demonstrating the task that we want to learn to perform. This setting is useful in applications (such as the task of driving) where it may be di#cul ..."
Abstract

Cited by 382 (12 self)
 Add to MetaCart
by the expert. Our algorithm is based on using "inverse reinforcement learning" to try to recover the unknown reward function. We show that our algorithm terminates in a small number of iterations, and that even though we may never recover the expert's reward function, the policy output
Algorithms for Inverse Reinforcement Learning
 in Proc. 17th International Conf. on Machine Learning
, 2000
"... This paper addresses the problem of inverse reinforcement learning (IRL) in Markov decision processes, that is, the problem of extracting a reward function given observed, optimal behaviour. IRL may be useful for apprenticeship learning to acquire skilled behaviour, and for ascertaining the re ..."
Abstract

Cited by 314 (6 self)
 Add to MetaCart
This paper addresses the problem of inverse reinforcement learning (IRL) in Markov decision processes, that is, the problem of extracting a reward function given observed, optimal behaviour. IRL may be useful for apprenticeship learning to acquire skilled behaviour, and for ascertaining
LeastSquares Policy Iteration
 JOURNAL OF MACHINE LEARNING RESEARCH
, 2003
"... We propose a new approach to reinforcement learning for control problems which combines valuefunction approximation with linear architectures and approximate policy iteration. This new approach ..."
Abstract

Cited by 462 (12 self)
 Add to MetaCart
We propose a new approach to reinforcement learning for control problems which combines valuefunction approximation with linear architectures and approximate policy iteration. This new approach
Results 1  10
of
5,959