Results 1  10
of
719,238
A Fixed Suppressed Rate Selection Method for Suppressed Fuzzy CMeans Clustering Algorithm
, 2014
"... Suppressed fuzzy cmeans (SFCM) clustering algorithm with the intention of combining the higher speed of hard cmeans clustering algorithm and the better classification performance of fuzzy cmeans clustering algorithm had been studied by many researchers and applied in many fields. In the algorith ..."
Abstract
 Add to MetaCart
Suppressed fuzzy cmeans (SFCM) clustering algorithm with the intention of combining the higher speed of hard cmeans clustering algorithm and the better classification performance of fuzzy cmeans clustering algorithm had been studied by many researchers and applied in many fields
On Spectral Clustering: Analysis and an algorithm
 ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS
, 2001
"... Despite many empirical successes of spectral clustering methods  algorithms that cluster points using eigenvectors of matrices derived from the distances between the points  there are several unresolved issues. First, there is a wide variety of algorithms that use the eigenvectors in slightly ..."
Abstract

Cited by 1697 (13 self)
 Add to MetaCart
Despite many empirical successes of spectral clustering methods  algorithms that cluster points using eigenvectors of matrices derived from the distances between the points  there are several unresolved issues. First, there is a wide variety of algorithms that use the eigenvectors
Mean shift, mode seeking, and clustering
 IEEE Transactions on Pattern Analysis and Machine Intelligence
, 1995
"... AbstractMean shift, a simple iterative procedure that shifts each data point to the average of data points in its neighborhood, is generalized and analyzed in this paper. This generalization makes some kmeans like clustering algorithms its special cases. It is shown that mean shift is a modeseeki ..."
Abstract

Cited by 620 (0 self)
 Add to MetaCart
AbstractMean shift, a simple iterative procedure that shifts each data point to the average of data points in its neighborhood, is generalized and analyzed in this paper. This generalization makes some kmeans like clustering algorithms its special cases. It is shown that mean shift is a mode
Planning Algorithms
, 2004
"... This book presents a unified treatment of many different kinds of planning algorithms. The subject lies at the crossroads between robotics, control theory, artificial intelligence, algorithms, and computer graphics. The particular subjects covered include motion planning, discrete planning, planning ..."
Abstract

Cited by 1108 (51 self)
 Add to MetaCart
This book presents a unified treatment of many different kinds of planning algorithms. The subject lies at the crossroads between robotics, control theory, artificial intelligence, algorithms, and computer graphics. The particular subjects covered include motion planning, discrete planning
Scatter/Gather: A Clusterbased Approach to Browsing Large Document Collections
, 1992
"... Document clustering has not been well received as an information retrieval tool. Objections to its use fall into two main categories: first, that clustering is too slow for large corpora (with running time often quadratic in the number of documents); and second, that clustering does not appreciably ..."
Abstract

Cited by 772 (12 self)
 Add to MetaCart
document browsing technique that employs document clustering as its primary operation. We also present fast (linear time) clustering algorithms which support this interactive browsing paradigm. 1 Introduction Document clustering has been extensively investigated as a methodology for improving document
Distance Metric Learning, With Application To Clustering With SideInformation
 ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 15
, 2003
"... Many algorithms rely critically on being given a good metric over their inputs. For instance, data can often be clustered in many "plausible" ways, and if a clustering algorithm such as Kmeans initially fails to find one that is meaningful to a user, the only recourse may be for the us ..."
Abstract

Cited by 799 (14 self)
 Add to MetaCart
Many algorithms rely critically on being given a good metric over their inputs. For instance, data can often be clustered in many "plausible" ways, and if a clustering algorithm such as Kmeans initially fails to find one that is meaningful to a user, the only recourse may
OPTICS: Ordering Points To Identify the Clustering Structure
, 1999
"... Cluster analysis is a primary method for database mining. It is either used as a standalone tool to get insight into the distribution of a data set, e.g. to focus further analysis and data processing, or as a preprocessing step for other algorithms operating on the detected clusters. Almost all of ..."
Abstract

Cited by 511 (49 self)
 Add to MetaCart
Cluster analysis is a primary method for database mining. It is either used as a standalone tool to get insight into the distribution of a data set, e.g. to focus further analysis and data processing, or as a preprocessing step for other algorithms operating on the detected clusters. Almost all
Estimating the number of clusters in a dataset via the Gap statistic
, 2000
"... We propose a method (the \Gap statistic") for estimating the number of clusters (groups) in a set of data. The technique uses the output of any clustering algorithm (e.g. kmeans or hierarchical), comparing the change in within cluster dispersion to that expected under an appropriate reference ..."
Abstract

Cited by 492 (1 self)
 Add to MetaCart
We propose a method (the \Gap statistic") for estimating the number of clusters (groups) in a set of data. The technique uses the output of any clustering algorithm (e.g. kmeans or hierarchical), comparing the change in within cluster dispersion to that expected under an appropriate reference
The Macroscopic Behavior of the TCP Congestion Avoidance Algorithm
, 1997
"... In this paper, we analyze a performance model for the TCP Congestion Avoidance algorithm. The model predicts the bandwidth of a sustained TCP connection subjected to light to moderate packet losses, such as loss caused by network congestion. It assumes that TCP avoids retransmission timeouts and alw ..."
Abstract

Cited by 648 (18 self)
 Add to MetaCart
In this paper, we analyze a performance model for the TCP Congestion Avoidance algorithm. The model predicts the bandwidth of a sustained TCP connection subjected to light to moderate packet losses, such as loss caused by network congestion. It assumes that TCP avoids retransmission timeouts
ModelBased Clustering, Discriminant Analysis, and Density Estimation
 JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION
, 2000
"... Cluster analysis is the automated search for groups of related observations in a data set. Most clustering done in practice is based largely on heuristic but intuitively reasonable procedures and most clustering methods available in commercial software are also of this type. However, there is little ..."
Abstract

Cited by 557 (28 self)
 Add to MetaCart
Cluster analysis is the automated search for groups of related observations in a data set. Most clustering done in practice is based largely on heuristic but intuitively reasonable procedures and most clustering methods available in commercial software are also of this type. However
Results 1  10
of
719,238