Results 1  10
of
503,628
SumMax Graph Partitioning Problem
"... In this paper we consider the classical combinatorial optimization graph partitioning problem, with SumMax as objective function. Given a weighted graph G = (V, E) and a integer k, our objective k j=i+1 is to find a kpartition (V1,..., Vk) of V that minimizes ∑k−1 i=1 max u∈Vi,v∈Vj w(u, v), where ..."
Abstract
 Add to MetaCart
In this paper we consider the classical combinatorial optimization graph partitioning problem, with SumMax as objective function. Given a weighted graph G = (V, E) and a integer k, our objective k j=i+1 is to find a kpartition (V1,..., Vk) of V that minimizes ∑k−1 i=1 max u∈Vi,v∈Vj w(u, v
On the approximability of the SumMax graph partitioning problem?
"... Abstract In this paper we consider the classical combinatorial optimization graph partitioning problem with SumMax as objective function. Given a weighted graph G = (V,E) and a integer k, our objective is to find a kpartition (V1,..., Vk) of V that minimizes∑k−1 i=1 ∑k j=i+1maxu∈Vi,v∈Vj w(u, v), ..."
Abstract

Cited by 1 (0 self)
 Add to MetaCart
Abstract In this paper we consider the classical combinatorial optimization graph partitioning problem with SumMax as objective function. Given a weighted graph G = (V,E) and a integer k, our objective is to find a kpartition (V1,..., Vk) of V that minimizes∑k−1 i=1 ∑k j=i+1maxu∈Vi,v∈Vj w(u, v
Books in graphs
, 2008
"... A set of q triangles sharing a common edge is called a book of size q. We write β (n, m) for the the maximal q such that every graph G (n, m) contains a book of size q. In this note 1) we compute β ( n, cn 2) for infinitely many values of c with 1/4 < c < 1/3, 2) we show that if m ≥ (1/4 − α) ..."
Abstract

Cited by 2380 (22 self)
 Add to MetaCart
A set of q triangles sharing a common edge is called a book of size q. We write β (n, m) for the the maximal q such that every graph G (n, m) contains a book of size q. In this note 1) we compute β ( n, cn 2) for infinitely many values of c with 1/4 < c < 1/3, 2) we show that if m ≥ (1/4 − α
A fast and high quality multilevel scheme for partitioning irregular graphs
 SIAM JOURNAL ON SCIENTIFIC COMPUTING
, 1998
"... Recently, a number of researchers have investigated a class of graph partitioning algorithms that reduce the size of the graph by collapsing vertices and edges, partition the smaller graph, and then uncoarsen it to construct a partition for the original graph [Bui and Jones, Proc. ..."
Abstract

Cited by 1173 (16 self)
 Add to MetaCart
Recently, a number of researchers have investigated a class of graph partitioning algorithms that reduce the size of the graph by collapsing vertices and edges, partition the smaller graph, and then uncoarsen it to construct a partition for the original graph [Bui and Jones, Proc.
Community detection in graphs
, 2009
"... The modern science of networks has brought significant advances to our understanding of complex systems. One of the most relevant features of graphs representing real systems is community structure, or clustering, i. e. the organization of vertices in clusters, with many edges joining vertices of th ..."
Abstract

Cited by 801 (1 self)
 Add to MetaCart
The modern science of networks has brought significant advances to our understanding of complex systems. One of the most relevant features of graphs representing real systems is community structure, or clustering, i. e. the organization of vertices in clusters, with many edges joining vertices
A Separator Theorem for Planar Graphs
, 1977
"... Let G be any nvertex planar graph. We prove that the vertices of G can be partitioned into three sets A, B, C such that no edge joins a vertex in A with a vertex in B, neither A nor B contains more than 2n/3 vertices, and C contains no more than 2& & vertices. We exhibit an algorithm which ..."
Abstract

Cited by 465 (1 self)
 Add to MetaCart
Let G be any nvertex planar graph. We prove that the vertices of G can be partitioned into three sets A, B, C such that no edge joins a vertex in A with a vertex in B, neither A nor B contains more than 2n/3 vertices, and C contains no more than 2& & vertices. We exhibit an algorithm which
A Framework for Dynamic Graph Drawing
 CONGRESSUS NUMERANTIUM
, 1992
"... Drawing graphs is an important problem that combines flavors of computational geometry and graph theory. Applications can be found in a variety of areas including circuit layout, network management, software engineering, and graphics. The main contributions of this paper can be summarized as follows ..."
Abstract

Cited by 627 (44 self)
 Add to MetaCart
Drawing graphs is an important problem that combines flavors of computational geometry and graph theory. Applications can be found in a variety of areas including circuit layout, network management, software engineering, and graphics. The main contributions of this paper can be summarized
Factor Graphs and the SumProduct Algorithm
 IEEE TRANSACTIONS ON INFORMATION THEORY
, 1998
"... A factor graph is a bipartite graph that expresses how a "global" function of many variables factors into a product of "local" functions. Factor graphs subsume many other graphical models including Bayesian networks, Markov random fields, and Tanner graphs. Following one simple c ..."
Abstract

Cited by 1787 (72 self)
 Add to MetaCart
computational rule, the sumproduct algorithm operates in factor graphs to computeeither exactly or approximatelyvarious marginal functions by distributed messagepassing in the graph. A wide variety of algorithms developed in artificial intelligence, signal processing, and digital communications can
Fast Planning Through Planning Graph Analysis
 ARTIFICIAL INTELLIGENCE
, 1995
"... We introduce a new approach to planning in STRIPSlike domains based on constructing and analyzing a compact structure we call a Planning Graph. We describe a new planner, Graphplan, that uses this paradigm. Graphplan always returns a shortest possible partialorder plan, or states that no valid pla ..."
Abstract

Cited by 1165 (3 self)
 Add to MetaCart
We introduce a new approach to planning in STRIPSlike domains based on constructing and analyzing a compact structure we call a Planning Graph. We describe a new planner, Graphplan, that uses this paradigm. Graphplan always returns a shortest possible partialorder plan, or states that no valid
Results 1  10
of
503,628