• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Tools

Sorted by:
Try your query at:
Semantic Scholar Scholar Academic
Google Bing DBLP
Results 1 - 10 of 176,854
Next 10 →

Frequent Subgraph Discovery

by Michihiro Kuramochi, George Karypis , 2001
"... Over the years, frequent itemset discovery algorithms have been used to solve various interesting problems. As data mining techniques are being increasingly applied to non-traditional domains, existing approaches for finding frequent itemsets cannot be used as they cannot model the requirement of th ..."
Abstract - Cited by 407 (14 self) - Add to MetaCart
computationally efficient algorithm for finding all frequent subgraphs in large graph databases. We evaluated the performance of the algorithm by experiments with synthetic datasets as well as a chemical compound dataset. The empirical results show that our algorithm scales linearly with the number of input

Community detection in graphs

by Santo Fortunato , 2009
"... The modern science of networks has brought significant advances to our understanding of complex systems. One of the most relevant features of graphs representing real systems is community structure, or clustering, i. e. the organization of vertices in clusters, with many edges joining vertices of th ..."
Abstract - Cited by 801 (1 self) - Add to MetaCart
The modern science of networks has brought significant advances to our understanding of complex systems. One of the most relevant features of graphs representing real systems is community structure, or clustering, i. e. the organization of vertices in clusters, with many edges joining vertices

A fast and high quality multilevel scheme for partitioning irregular graphs

by George Karypis, Vipin Kumar - SIAM JOURNAL ON SCIENTIFIC COMPUTING , 1998
"... Recently, a number of researchers have investigated a class of graph partitioning algorithms that reduce the size of the graph by collapsing vertices and edges, partition the smaller graph, and then uncoarsen it to construct a partition for the original graph [Bui and Jones, Proc. ..."
Abstract - Cited by 1173 (16 self) - Add to MetaCart
Recently, a number of researchers have investigated a class of graph partitioning algorithms that reduce the size of the graph by collapsing vertices and edges, partition the smaller graph, and then uncoarsen it to construct a partition for the original graph [Bui and Jones, Proc.

Statistical mechanics of complex networks

by Réka Albert, Albert-lászló Barabási - Rev. Mod. Phys
"... Complex networks describe a wide range of systems in nature and society, much quoted examples including the cell, a network of chemicals linked by chemical reactions, or the Internet, a network of routers and computers connected by physical links. While traditionally these systems were modeled as ra ..."
Abstract - Cited by 2083 (10 self) - Add to MetaCart
Complex networks describe a wide range of systems in nature and society, much quoted examples including the cell, a network of chemicals linked by chemical reactions, or the Internet, a network of routers and computers connected by physical links. While traditionally these systems were modeled

Reversible Markov chains and random walks on graphs

by David Aldous, James Allen Fill , 2002
"... ..."
Abstract - Cited by 549 (13 self) - Add to MetaCart
Abstract not found

An application-specific protocol architecture for wireless networks

by Wendi Beth Heinzelman , 2000
"... ..."
Abstract - Cited by 1217 (18 self) - Add to MetaCart
Abstract not found

The Structure-Mapping Engine: Algorithm and Examples

by Brian Falkenhainer, Kenneth D. Forbus, Dedre Gentner - Artificial Intelligence , 1989
"... This paper describes the Structure-Mapping Engine (SME), a program for studying analogical processing. SME has been built to explore Gentner's Structure-mapping theory of analogy, and provides a "tool kit" for constructing matching algorithms consistent with this theory. Its flexibili ..."
Abstract - Cited by 512 (115 self) - Add to MetaCart
This paper describes the Structure-Mapping Engine (SME), a program for studying analogical processing. SME has been built to explore Gentner's Structure-mapping theory of analogy, and provides a "tool kit" for constructing matching algorithms consistent with this theory. Its

Fast Folding and Comparison of RNA Secondary Structures (The Vienna RNA Package)

by Ivo L. Hofacker, Walter Fontana, Peter F. Stadler, L. Sebastian Bonhoeffer, Manfred Tacker, Peter Schuster
"... Computer codes for computation and comparison of RNA secondary structures, the Vienna RNA package, are presented, that are based on dynamic programming algorithms and aim at predictions of structures with minimum free energies as well as at computations of the equilibrium partition functions and bas ..."
Abstract - Cited by 812 (119 self) - Add to MetaCart
Computer codes for computation and comparison of RNA secondary structures, the Vienna RNA package, are presented, that are based on dynamic programming algorithms and aim at predictions of structures with minimum free energies as well as at computations of the equilibrium partition functions

Fusion, Propagation, and Structuring in Belief Networks

by Judea Pearl - ARTIFICIAL INTELLIGENCE , 1986
"... Belief networks are directed acyclic graphs in which the nodes represent propositions (or variables), the arcs signify direct dependencies between the linked propositions, and the strengths of these dependencies are quantified by conditional probabilities. A network of this sort can be used to repre ..."
Abstract - Cited by 482 (8 self) - Add to MetaCart
Belief networks are directed acyclic graphs in which the nodes represent propositions (or variables), the arcs signify direct dependencies between the linked propositions, and the strengths of these dependencies are quantified by conditional probabilities. A network of this sort can be used

Modeling and simulation of genetic regulatory systems: A literature review

by Hidde De Jong - JOURNAL OF COMPUTATIONAL BIOLOGY , 2002
"... In order to understand the functioning of organisms on the molecular level, we need to know which genes are expressed, when and where in the organism, and to which extent. The regulation of gene expression is achieved through genetic regulatory systems structured by networks of interactions between ..."
Abstract - Cited by 729 (15 self) - Add to MetaCart
In order to understand the functioning of organisms on the molecular level, we need to know which genes are expressed, when and where in the organism, and to which extent. The regulation of gene expression is achieved through genetic regulatory systems structured by networks of interactions between
Next 10 →
Results 1 - 10 of 176,854
Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University