Results 1  10
of
7,919
SteerableScalable Kernels for Edge Detection and Junction Analysis
 Image and Vision Computing
, 1992
"... Families of kernels that are useful in a variety of early vision algorithms may be obtained by rotating and scaling in a continuum a `template' kernel. These multiscale multiorientation family may be approximated by linear interpolation of a discrete finite set of appropriate `basis' ker ..."
Abstract

Cited by 91 (1 self)
 Add to MetaCart
' kernels. A scheme for generating such a basis together with the appropriate interpolation weights is described. Unlike previous schemes by Perona, and Simoncelli et al. it is guaranteed to generate the most parsimonious one. Additionally, it is shown how to exploit two symmetries in edgedetection kernels
Detecting faces in images: A survey
 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
, 2002
"... Images containing faces are essential to intelligent visionbased human computer interaction, and research efforts in face processing include face recognition, face tracking, pose estimation, and expression recognition. However, many reported methods assume that the faces in an image or an image se ..."
Abstract

Cited by 831 (4 self)
 Add to MetaCart
sequence have been identified and localized. To build fully automated systems that analyze the information contained in face images, robust and efficient face detection algorithms are required. Given a single image, the goal of face detection is to identify all image regions which contain a face regardless
The Design and Use of Steerable Filters
 IEEE Transactions on Pattern Analysis and Machine Intelligence
, 1991
"... Oriented filters are useful in many early vision and image processing tasks. One often needs to apply the same filter, rotated to different angles under adaptive control, or wishes to calculate the filter response at various orientations. We present an efficient architecture to synthesize filters of ..."
Abstract

Cited by 1079 (11 self)
 Add to MetaCart
Oriented filters are useful in many early vision and image processing tasks. One often needs to apply the same filter, rotated to different angles under adaptive control, or wishes to calculate the filter response at various orientations. We present an efficient architecture to synthesize filters of arbitrary orientations from linear combinations of basis filters, allowing one to adaptively "steer" a filter to any orientation, and to determine analytically the filter output as a function of orientation.
Factor Graphs and the SumProduct Algorithm
 IEEE TRANSACTIONS ON INFORMATION THEORY
, 1998
"... A factor graph is a bipartite graph that expresses how a "global" function of many variables factors into a product of "local" functions. Factor graphs subsume many other graphical models including Bayesian networks, Markov random fields, and Tanner graphs. Following one simple c ..."
Abstract

Cited by 1787 (72 self)
 Add to MetaCart
A factor graph is a bipartite graph that expresses how a "global" function of many variables factors into a product of "local" functions. Factor graphs subsume many other graphical models including Bayesian networks, Markov random fields, and Tanner graphs. Following one simple computational rule, the sumproduct algorithm operates in factor graphs to computeeither exactly or approximatelyvarious marginal functions by distributed messagepassing in the graph. A wide variety of algorithms developed in artificial intelligence, signal processing, and digital communications can be derived as specific instances of the sumproduct algorithm, including the forward/backward algorithm, the Viterbi algorithm, the iterative "turbo" decoding algorithm, Pearl's belief propagation algorithm for Bayesian networks, the Kalman filter, and certain fast Fourier transform algorithms.
Shape Matching and Object Recognition Using Shape Contexts
 IEEE Transactions on Pattern Analysis and Machine Intelligence
, 2001
"... We present a novel approach to measuring similarity between shapes and exploit it for object recognition. In our framework, the measurement of similarity is preceded by (1) solv ing for correspondences between points on the two shapes, (2) using the correspondences to estimate an aligning transform ..."
Abstract

Cited by 1787 (21 self)
 Add to MetaCart
We present a novel approach to measuring similarity between shapes and exploit it for object recognition. In our framework, the measurement of similarity is preceded by (1) solv ing for correspondences between points on the two shapes, (2) using the correspondences to estimate an aligning transform. In order to solve the correspondence problem, we attach a descriptor, the shape context, to each point. The shape context at a reference point captures the distribution of the remaining points relative to it, thus offering a globally discriminative characterization. Corresponding points on two similar shapes will have similar shape con texts, enabling us to solve for correspondences as an optimal assignment problem. Given the point correspondences, we estimate the transformation that best aligns the two shapes; reg ularized thin plate splines provide a flexible class of transformation maps for this purpose. The dissimilarity between the two shapes is computed as a sum of matching errors between corresponding points, together with a term measuring the magnitude of the aligning trans form. We treat recognition in a nearestneighbor classification framework as the problem of finding the stored prototype shape that is maximally similar to that in the image. Results are presented for silhouettes, trademarks, handwritten digits and the COIL dataset.
A Survey of active network Research
 IEEE Communications
, 1997
"... Active networks are a novel approach to network architecture in which the switches of the network perform customized computations on the messages flowing through them. This approach is motivated by both lead user applications, which perform userdriven computation at nodes within the network today, ..."
Abstract

Cited by 542 (29 self)
 Add to MetaCart
Active networks are a novel approach to network architecture in which the switches of the network perform customized computations on the messages flowing through them. This approach is motivated by both lead user applications, which perform userdriven computation at nodes within the network today, and the emergence of mobile code technologies that make dynamic network service innovation attainable. In this paper, we discuss two approaches to the realization of active networks and provide a snapshot of the current research issues and activities. Introduction – What Are Active Networks? In an active network, the routers or switches of the network perform customized computations on the messages flowing through them. For example, a user of an active network could send a “trace ” program to each router and arrange for the program to be executed when their packets are processed. Figure 1 illustrates how the routers of an IP
Inferring Global Perceptual Contours from Local Features
, 1996
"... Introduction Computer vision can greatly benefit from perceptual grouping. Perceptual Grouping can be classified as a midlevel process directed toward closing the gap between what is produced by stateoftheart lowlevel algorithms (such as edge detectors) and what is desired as input to high lev ..."
Abstract

Cited by 209 (10 self)
 Add to MetaCart
Introduction Computer vision can greatly benefit from perceptual grouping. Perceptual Grouping can be classified as a midlevel process directed toward closing the gap between what is produced by stateoftheart lowlevel algorithms (such as edge detectors) and what is desired as input to high
Results 1  10
of
7,919