Results 11  20
of
554,170
Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation
, 2002
"... There are many sources of systematic variation in cDNA microarray experiments which affect the measured gene expression levels (e.g. differences in labeling efficiency between the two fluorescent dyes). The term normalization refers to the process of removing such variation. A constant adjustment is ..."
Abstract

Cited by 699 (9 self)
 Add to MetaCart
is often used to force the distribution of the intensity log ratios to have a median of zero for each slide. However, such global normalization approaches are not adequate in situations where dye biases can depend on spot overall intensity and/or spatial location within the array. This article proposes
Predicting How People Play Games: Reinforcement Learning . . .
 AMERICAN ECONOMIC REVIEW
, 1998
"... ..."
Estimating the number of clusters in a dataset via the Gap statistic
, 2000
"... We propose a method (the \Gap statistic") for estimating the number of clusters (groups) in a set of data. The technique uses the output of any clustering algorithm (e.g. kmeans or hierarchical), comparing the change in within cluster dispersion to that expected under an appropriate reference ..."
Abstract

Cited by 492 (1 self)
 Add to MetaCart
We propose a method (the \Gap statistic") for estimating the number of clusters (groups) in a set of data. The technique uses the output of any clustering algorithm (e.g. kmeans or hierarchical), comparing the change in within cluster dispersion to that expected under an appropriate reference
Three Generative, Lexicalised Models for Statistical Parsing
, 1997
"... In this paper we first propose a new statistical parsing model, which is a generative model of lexicalised contextfree gram mar. We then extend the model to in clude a probabilistic treatment of both subcategorisation and wh~movement. Results on Wall Street Journal text show that the parse ..."
Abstract

Cited by 567 (8 self)
 Add to MetaCart
In this paper we first propose a new statistical parsing model, which is a generative model of lexicalised contextfree gram mar. We then extend the model to in clude a probabilistic treatment of both subcategorisation and wh~movement. Results on Wall Street Journal text show
Probabilistic Visual Learning for Object Representation
, 1996
"... We present an unsupervised technique for visual learning which is based on density estimation in highdimensional spaces using an eigenspace decomposition. Two types of density estimates are derived for modeling the training data: a multivariate Gaussian (for unimodal distributions) and a Mixtureof ..."
Abstract

Cited by 705 (15 self)
 Add to MetaCart
We present an unsupervised technique for visual learning which is based on density estimation in highdimensional spaces using an eigenspace decomposition. Two types of density estimates are derived for modeling the training data: a multivariate Gaussian (for unimodal distributions) and a Mixture
Monetary Policy Shocks: What Have we Learned and to What End?
, 1998
"... This paper reviews recent research that grapples with the question: What happens after an exogenous shock to monetary policy? We argue that this question is interesting because it lies at the center of a particular approach to assessing the empirical plausibility of structural economic models that c ..."
Abstract

Cited by 967 (25 self)
 Add to MetaCart
This paper reviews recent research that grapples with the question: What happens after an exogenous shock to monetary policy? We argue that this question is interesting because it lies at the center of a particular approach to assessing the empirical plausibility of structural economic models
SemiSupervised Learning Literature Survey
, 2006
"... We review the literature on semisupervised learning, which is an area in machine learning and more generally, artificial intelligence. There has been a whole
spectrum of interesting ideas on how to learn from both labeled and unlabeled data, i.e. semisupervised learning. This document is a chapter ..."
Abstract

Cited by 757 (8 self)
 Add to MetaCart
We review the literature on semisupervised learning, which is an area in machine learning and more generally, artificial intelligence. There has been a whole
spectrum of interesting ideas on how to learn from both labeled and unlabeled data, i.e. semisupervised learning. This document is a
Solving multiclass learning problems via errorcorrecting output codes
 JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH
, 1995
"... Multiclass learning problems involve nding a de nition for an unknown function f(x) whose range is a discrete set containing k>2values (i.e., k \classes"). The de nition is acquired by studying collections of training examples of the form hx i;f(x i)i. Existing approaches to multiclass l ..."
Abstract

Cited by 730 (8 self)
 Add to MetaCart
of multiclass learning tasks. We also demonstrate that this approach is robust with respect to changes in the size of the training sample, the assignment of distributed representations to particular classes, and the application of over tting avoidance techniques such as decisiontree pruning. Finally,we show
Sparse Bayesian Learning and the Relevance Vector Machine
, 2001
"... This paper introduces a general Bayesian framework for obtaining sparse solutions to regression and classication tasks utilising models linear in the parameters. Although this framework is fully general, we illustrate our approach with a particular specialisation that we denote the `relevance vec ..."
Abstract

Cited by 958 (5 self)
 Add to MetaCart
This paper introduces a general Bayesian framework for obtaining sparse solutions to regression and classication tasks utilising models linear in the parameters. Although this framework is fully general, we illustrate our approach with a particular specialisation that we denote the `relevance
Results 11  20
of
554,170