• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Tools

Sorted by:
Try your query at:
Semantic Scholar Scholar Academic
Google Bing DBLP
Results 1 - 10 of 708,139
Next 10 →

A Guided Tour to Approximate String Matching

by Gonzalo Navarro - ACM COMPUTING SURVEYS , 1999
"... We survey the current techniques to cope with the problem of string matching allowing errors. This is becoming a more and more relevant issue for many fast growing areas such as information retrieval and computational biology. We focus on online searching and mostly on edit distance, explaining t ..."
Abstract - Cited by 584 (38 self) - Add to MetaCart
We survey the current techniques to cope with the problem of string matching allowing errors. This is becoming a more and more relevant issue for many fast growing areas such as information retrieval and computational biology. We focus on online searching and mostly on edit distance, explaining

Linear pattern matching algorithms

by Peter Weiner - IN PROCEEDINGS OF THE 14TH ANNUAL IEEE SYMPOSIUM ON SWITCHING AND AUTOMATA THEORY. IEEE , 1972
"... In 1970, Knuth, Pratt, and Morris [1] showed how to do basic pattern matching in linear time. Related problems, such as those discussed in [4], have previously been solved by efficient but sub-optimal algorithms. In this paper, we introduce an interesting data structure called a bi-tree. A linear ti ..."
Abstract - Cited by 549 (0 self) - Add to MetaCart
In 1970, Knuth, Pratt, and Morris [1] showed how to do basic pattern matching in linear time. Related problems, such as those discussed in [4], have previously been solved by efficient but sub-optimal algorithms. In this paper, we introduce an interesting data structure called a bi-tree. A linear

Economic analysis of cross section and panel data

by Jeffrey M. Wooldridge
"... ..."
Abstract - Cited by 3292 (18 self) - Add to MetaCart
Abstract not found

Attention, similarity, and the identification-Categorization Relationship

by Robert M. Nosofsky , 1986
"... A unified quantitative approach to modeling subjects ' identification and categorization of multidimensional perceptual stimuli is proposed and tested. Two subjects identified and categorized the same set of perceptually confusable stimuli varying on separable dimensions. The identification dat ..."
Abstract - Cited by 663 (28 self) - Add to MetaCart
, because of the influence of selective attention, similarity relationships change systematically across the two paradigms. Some support was gained for the hypothesis that subjects distribute attention among component dimensions so as to optimize categorization performance. Evidence was also obtained

SIMPLIcity: Semantics-Sensitive Integrated Matching for Picture LIbraries

by James Z. Wang, Jia Li, Gio Wiederhold - IEEE Transactions on Pattern Analysis and Machine Intelligence , 2001
"... The need for efficient content-based image retrieval has increased tremendously in many application areas such as biomedicine, military, commerce, education, and Web image classification and searching. We present here SIMPLIcity (Semanticssensitive Integrated Matching for Picture LIbraries), an imag ..."
Abstract - Cited by 541 (35 self) - Add to MetaCart
The need for efficient content-based image retrieval has increased tremendously in many application areas such as biomedicine, military, commerce, education, and Web image classification and searching. We present here SIMPLIcity (Semanticssensitive Integrated Matching for Picture LIbraries

The pyramid match kernel: Discriminative classification with sets of image features

by Kristen Grauman, Trevor Darrell - IN ICCV , 2005
"... Discriminative learning is challenging when examples are sets of features, and the sets vary in cardinality and lack any sort of meaningful ordering. Kernel-based classification methods can learn complex decision boundaries, but a kernel over unordered set inputs must somehow solve for correspondenc ..."
Abstract - Cited by 546 (29 self) - Add to MetaCart
for correspondences – generally a computationally expensive task that becomes impractical for large set sizes. We present a new fast kernel function which maps unordered feature sets to multi-resolution histograms and computes a weighted histogram intersection in this space. This “pyramid match” computation is linear

Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories

by Cordelia Schmid - In CVPR
"... This paper presents a method for recognizing scene categories based on approximate global geometric correspondence. This technique works by partitioning the image into increasingly fine sub-regions and computing histograms of local features found inside each sub-region. The resulting “spatial pyrami ..."
Abstract - Cited by 1878 (52 self) - Add to MetaCart
This paper presents a method for recognizing scene categories based on approximate global geometric correspondence. This technique works by partitioning the image into increasingly fine sub-regions and computing histograms of local features found inside each sub-region. The resulting “spatial

The cross-section of expected stock returns

by Eugene F. Fama, Kenneth R. French - Journal of Finance , 1992
"... Your use of the JSTOR archive indicates your acceptance of JSTOR ' s Terms and Conditions of Use, available at ..."
Abstract - Cited by 1945 (23 self) - Add to MetaCart
Your use of the JSTOR archive indicates your acceptance of JSTOR ' s Terms and Conditions of Use, available at

Iterative point matching for registration of free-form curves and surfaces

by Zhengyou Zhang , 1994
"... A heuristic method has been developed for registering two sets of 3-D curves obtained by using an edge-based stereo system, or two dense 3-D maps obtained by using a correlation-based stereo system. Geometric matching in general is a difficult unsolved problem in computer vision. Fortunately, in ma ..."
Abstract - Cited by 659 (7 self) - Add to MetaCart
A heuristic method has been developed for registering two sets of 3-D curves obtained by using an edge-based stereo system, or two dense 3-D maps obtained by using a correlation-based stereo system. Geometric matching in general is a difficult unsolved problem in computer vision. Fortunately

Linear spatial pyramid matching using sparse coding for image classification

by Jianchao Yang, Kai Yu, Yihong Gong, Thomas Huang - in IEEE Conference on Computer Vision and Pattern Recognition(CVPR , 2009
"... Recently SVMs using spatial pyramid matching (SPM) kernel have been highly successful in image classification. Despite its popularity, these nonlinear SVMs have a complexity O(n 2 ∼ n 3) in training and O(n) in testing, where n is the training size, implying that it is nontrivial to scaleup the algo ..."
Abstract - Cited by 488 (19 self) - Add to MetaCart
Recently SVMs using spatial pyramid matching (SPM) kernel have been highly successful in image classification. Despite its popularity, these nonlinear SVMs have a complexity O(n 2 ∼ n 3) in training and O(n) in testing, where n is the training size, implying that it is nontrivial to scaleup
Next 10 →
Results 1 - 10 of 708,139
Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University