Results 1  10
of
318,192
Noise Trader Risk in Financial Markets
 Jolurnial of Political Economy
, 1990
"... We present a simple overlapping generations model of an asset market in which irrational noise traders with erroneous stochastic beliefs both affect prices and earn higher expected returns. The unpredictability of noise traders ’ beliefs creates a risk in the price of the asset that deters rational ..."
Abstract

Cited by 858 (23 self)
 Add to MetaCart
We present a simple overlapping generations model of an asset market in which irrational noise traders with erroneous stochastic beliefs both affect prices and earn higher expected returns. The unpredictability of noise traders ’ beliefs creates a risk in the price of the asset that deters rational
Metabolic stability and epigenesis in randomly connected nets
 Journal of Theoretical Biology
, 1969
"... “The world is either the effect of cause or chance. If the latter, it is a world for all that, that is to say, it is a regular and beautiful structure.” Marcus Aurelius Protoorganisms probably were randomly aggregated nets of chemical reactions. The hypothesis that contemporary organisms are also r ..."
Abstract

Cited by 637 (4 self)
 Add to MetaCart
: behave with great order and stability; undergo behavior cycles whose length predicts cell replication time as a function of the number of genes per cell; possess different modes of behavior whose number per net predicts roughly the number of cell types in an organism as a function of its number of genes
Just Relax: Convex Programming Methods for Identifying Sparse Signals in Noise
, 2006
"... This paper studies a difficult and fundamental problem that arises throughout electrical engineering, applied mathematics, and statistics. Suppose that one forms a short linear combination of elementary signals drawn from a large, fixed collection. Given an observation of the linear combination that ..."
Abstract

Cited by 496 (2 self)
 Add to MetaCart
that has been contaminated with additive noise, the goal is to identify which elementary signals participated and to approximate their coefficients. Although many algorithms have been proposed, there is little theory which guarantees that these algorithms can accurately and efficiently solve the problem
Constrained model predictive control: Stability and optimality
 AUTOMATICA
, 2000
"... Model predictive control is a form of control in which the current control action is obtained by solving, at each sampling instant, a finite horizon openloop optimal control problem, using the current state of the plant as the initial state; the optimization yields an optimal control sequence and t ..."
Abstract

Cited by 696 (15 self)
 Add to MetaCart
and/or timevarying systems. We concentrate our attention on research dealing with stability and optimality; in these areas the subject has developed, in our opinion, to a stage where it has achieved sufficient maturity to warrant the active interest of researchers in nonlinear control. We distill
Stable recovery of sparse overcomplete representations in the presence of noise
 IEEE TRANS. INFORM. THEORY
, 2006
"... Overcomplete representations are attracting interest in signal processing theory, particularly due to their potential to generate sparse representations of signals. However, in general, the problem of finding sparse representations must be unstable in the presence of noise. This paper establishes t ..."
Abstract

Cited by 462 (20 self)
 Add to MetaCart
Overcomplete representations are attracting interest in signal processing theory, particularly due to their potential to generate sparse representations of signals. However, in general, the problem of finding sparse representations must be unstable in the presence of noise. This paper establishes
The particel swarm: Explosion, stability, and convergence in a multidimensional complex space
 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTION
"... The particle swarm is an algorithm for finding optimal regions of complex search spaces through interaction of individuals in a population of particles. Though the algorithm, which is based on a metaphor of social interaction, has been shown to perform well, researchers have not adequately explained ..."
Abstract

Cited by 822 (10 self)
 Add to MetaCart
The particle swarm is an algorithm for finding optimal regions of complex search spaces through interaction of individuals in a population of particles. Though the algorithm, which is based on a metaphor of social interaction, has been shown to perform well, researchers have not adequately explained how it works. Further, traditional versions of the algorithm have had some dynamical properties that were not considered to be desirable, notably the particles’ velocities needed to be limited in order to control their trajectories. The present paper analyzes the particle’s trajectory as it moves in discrete time (the algebraic view), then progresses to the view of it in continuous time (the analytical view). A 5dimensional depiction is developed, which completely describes the system. These analyses lead to a generalized model of the algorithm, containing a set of coefficients to control the system’s convergence tendencies. Some results of the particle swarm optimizer, implementing modifications derived from the analysis, suggest methods for altering the original algorithm in ways that eliminate problems and increase the optimization power of the particle swarm
Implicit Fairing of Irregular Meshes using Diffusion and Curvature Flow
, 1999
"... In this paper, we develop methods to rapidly remove rough features from irregularly triangulated data intended to portray a smooth surface. The main task is to remove undesirable noise and uneven edges while retaining desirable geometric features. The problem arises mainly when creating highfidelit ..."
Abstract

Cited by 553 (24 self)
 Add to MetaCart
In this paper, we develop methods to rapidly remove rough features from irregularly triangulated data intended to portray a smooth surface. The main task is to remove undesirable noise and uneven edges while retaining desirable geometric features. The problem arises mainly when creating high
Inflation Forecast Targeting: Implementing and Monitoring Inflation Targets
, 1996
"... Inflation targeting is shown to imply inflation forecast targeting: the central bank's inflation forecast becomes an explicit intermediate target. Inflation forecast targeting simplifies both implementation and monitoring of monetary policy. The weight on output stabilization determines how qui ..."
Abstract

Cited by 668 (48 self)
 Add to MetaCart
Inflation targeting is shown to imply inflation forecast targeting: the central bank's inflation forecast becomes an explicit intermediate target. Inflation forecast targeting simplifies both implementation and monitoring of monetary policy. The weight on output stabilization determines how
Determining Optical Flow
 ARTIFICIAL INTELLIGENCE
, 1981
"... Optical flow cannot be computed locally, since only one independent measurement is available from the image sequence at a point, while the flow velocity has two components. A second constraint is needed. A method for finding the optical flow pattern is presented which assumes that the apparent veloc ..."
Abstract

Cited by 2379 (9 self)
 Add to MetaCart
in space and time. It is also insensitive to quantization of brightness levels and additive noise. Examples are included where the assumption of smoothness is violated at singular points or along lines in the image.
Regression Shrinkage and Selection Via the Lasso
 Journal of the Royal Statistical Society, Series B
, 1994
"... We propose a new method for estimation in linear models. The "lasso" minimizes the residual sum of squares subject to the sum of the absolute value of the coefficients being less than a constant. Because of the nature of this constraint it tends to produce some coefficients that are exactl ..."
Abstract

Cited by 4055 (51 self)
 Add to MetaCart
that are exactly zero and hence gives interpretable models. Our simulation studies suggest that the lasso enjoys some of the favourable properties of both subset selection and ridge regression. It produces interpretable models like subset selection and exhibits the stability of ridge regression. There is also
Results 1  10
of
318,192