Results 11  20
of
128,335
Constructing LinearSized Spectral Sparsification in AlmostLinear Time
"... We present the first almostlinear time algorithm for constructing linearsized spectral sparsification for graphs. This improves all previous constructions of linearsized spectral sparsification, which requires Ω(n2) time [1], [2], [3]. A key ingredient in our algorithm is a novel combination of t ..."
Abstract

Cited by 1 (0 self)
 Add to MetaCart
We present the first almostlinear time algorithm for constructing linearsized spectral sparsification for graphs. This improves all previous constructions of linearsized spectral sparsification, which requires Ω(n2) time [1], [2], [3]. A key ingredient in our algorithm is a novel combination
Spectral Sparsification in Dynamic Graph Streams
"... Abstract. We present a new bound relating edge connectivity in a simple, unweighted graph with effective resistance in the corresponding electrical network. The bound is tight. While we believe the bound is of independent interest, our work is motivated by the problem of constructing combinatorial a ..."
Abstract

Cited by 4 (2 self)
 Add to MetaCart
and spectral sparsifiers of a graph, i.e., sparse, weighted subgraphs that preserve cut information (in the case of combinatorial sparsifiers) and additional spectral information (in the case of spectral sparsifiers). Recent results by Fung et al. (STOC 2011) and Spielman and Srivastava (SICOMP 2011) show
Finding community structure in networks using the eigenvectors of matrices
, 2006
"... We consider the problem of detecting communities or modules in networks, groups of vertices with a higherthanaverage density of edges connecting them. Previous work indicates that a robust approach to this problem is the maximization of the benefit function known as “modularity ” over possible div ..."
Abstract

Cited by 500 (0 self)
 Add to MetaCart
divisions of a network. Here we show that this maximization process can be written in terms of the eigenspectrum of a matrix we call the modularity matrix, which plays a role in community detection similar to that played by the graph Laplacian in graph partitioning calculations. This result leads us to a
Spectral Sparsification and Restricted Invertibility
, 2010
"... In this thesis we prove the following two basic statements in linear algebra. Let B be an arbitrary n × m matrix where m ≥ n and suppose 0 < ε < 1 is given. 1. Spectral Sparsification. There is a nonnegative diagonal matrix Sm×m with at most ⌈n/ε2 ⌉ nonzero entries for which (1 − ε) 2BBT ≼ BSB ..."
Abstract

Cited by 11 (1 self)
 Add to MetaCart
In this thesis we prove the following two basic statements in linear algebra. Let B be an arbitrary n × m matrix where m ≥ n and suppose 0 < ε < 1 is given. 1. Spectral Sparsification. There is a nonnegative diagonal matrix Sm×m with at most ⌈n/ε2 ⌉ nonzero entries for which (1 − ε) 2BBT
Consensus and cooperation in networked multiagent systems
 PROCEEDINGS OF THE IEEE
"... This paper provides a theoretical framework for analysis of consensus algorithms for multiagent networked systems with an emphasis on the role of directed information flow, robustness to changes in network topology due to link/node failures, timedelays, and performance guarantees. An overview of ..."
Abstract

Cited by 772 (2 self)
 Add to MetaCart
of basic concepts of information consensus in networks and methods of convergence and performance analysis for the algorithms are provided. Our analysis framework is based on tools from matrix theory, algebraic graph theory, and control theory. We discuss the connections between consensus problems
Statistical mechanics of complex networks
 Rev. Mod. Phys
"... Complex networks describe a wide range of systems in nature and society, much quoted examples including the cell, a network of chemicals linked by chemical reactions, or the Internet, a network of routers and computers connected by physical links. While traditionally these systems were modeled as ra ..."
Abstract

Cited by 2083 (10 self)
 Add to MetaCart
as random graphs, it is increasingly recognized that the topology and evolution of real
Interior Point Methods in Semidefinite Programming with Applications to Combinatorial Optimization
 SIAM Journal on Optimization
, 1993
"... We study the semidefinite programming problem (SDP), i.e the problem of optimization of a linear function of a symmetric matrix subject to linear equality constraints and the additional condition that the matrix be positive semidefinite. First we review the classical cone duality as specialized to S ..."
Abstract

Cited by 557 (12 self)
 Add to MetaCart
and maximum stable set problems in perfect graphs, the maximum k partite subgraph problem in graphs, and va...
SemiSupervised Learning Literature Survey
, 2006
"... We review the literature on semisupervised learning, which is an area in machine learning and more generally, artificial intelligence. There has been a whole
spectrum of interesting ideas on how to learn from both labeled and unlabeled data, i.e. semisupervised learning. This document is a chapter ..."
Abstract

Cited by 757 (8 self)
 Add to MetaCart
We review the literature on semisupervised learning, which is an area in machine learning and more generally, artificial intelligence. There has been a whole
spectrum of interesting ideas on how to learn from both labeled and unlabeled data, i.e. semisupervised learning. This document is a chapter excerpt from the author’s
doctoral thesis (Zhu, 2005). However the author plans to update the online version frequently to incorporate the latest development in the field. Please obtain the latest
version at http://www.cs.wisc.edu/~jerryzhu/pub/ssl_survey.pdf
Parameterized Complexity
, 1998
"... the rapidly developing systematic connections between FPT and useful heuristic algorithms  a new and exciting bridge between the theory of computing and computing in practice. The organizers of the seminar strongly believe that knowledge of parameterized complexity techniques and results belongs ..."
Abstract

Cited by 1218 (75 self)
 Add to MetaCart
the rapidly developing systematic connections between FPT and useful heuristic algorithms  a new and exciting bridge between the theory of computing and computing in practice. The organizers of the seminar strongly believe that knowledge of parameterized complexity techniques and results belongs into the toolkit of every algorithm designer. The purpose of the seminar was to bring together leading experts from all over the world, and from the diverse areas of computer science that have been attracted to this new framework. The seminar was intended as the rst larger international meeting with a specic focus on parameterized complexity, and it hopefully serves as a driving force in the development of the eld. 1 We had 49 participants from Australia, Canada, India, Israel, New Zealand, USA, and various European countries. During the workshop 25 lectures were given. Moreover, one night session was devoted to open problems and Thursday was basically used for problem discussion
Coordination of Groups of Mobile Autonomous Agents Using Nearest Neighbor Rules
, 2002
"... In a recent Physical Review Letters paper, Vicsek et. al. propose a simple but compelling discretetime model of n autonomous agents fi.e., points or particlesg all moving in the plane with the same speed but with dierent headings. Each agent's heading is updated using a local rule based on ..."
Abstract

Cited by 1245 (60 self)
 Add to MetaCart
In a recent Physical Review Letters paper, Vicsek et. al. propose a simple but compelling discretetime model of n autonomous agents fi.e., points or particlesg all moving in the plane with the same speed but with dierent headings. Each agent's heading is updated using a local rule based on the average of its own heading plus the headings of its \neighbors." In their paper, Vicsek et. al. provide simulation results which demonstrate that the nearest neighbor rule they are studying can cause all agents to eventually move in the same direction despite the absence of centralized coordination and despite the fact that each agent's set of nearest neighbors change with time as the system evolves. This paper provides a theoretical explanation for this observed behavior. In addition, convergence results are derived for several other similarly inspired models.
Results 11  20
of
128,335