Results 1  10
of
253,572
Spectral Sparsification in Dynamic Graph Streams
"... Abstract. We present a new bound relating edge connectivity in a simple, unweighted graph with effective resistance in the corresponding electrical network. The bound is tight. While we believe the bound is of independent interest, our work is motivated by the problem of constructing combinatorial a ..."
Abstract

Cited by 4 (2 self)
 Add to MetaCart
in the combinatorial sparsifier construction, we also preserve the spectral properties of the graph. Combining this with the algorithms of Ahn et al. (SODA 2012, PODS 2012) gives rise to the first data stream algorithm for the construction of spectral sparsifiers in the dynamic setting where edges can be added
Community detection in graphs
, 2009
"... The modern science of networks has brought significant advances to our understanding of complex systems. One of the most relevant features of graphs representing real systems is community structure, or clustering, i. e. the organization of vertices in clusters, with many edges joining vertices of th ..."
Abstract

Cited by 801 (1 self)
 Add to MetaCart
The modern science of networks has brought significant advances to our understanding of complex systems. One of the most relevant features of graphs representing real systems is community structure, or clustering, i. e. the organization of vertices in clusters, with many edges joining vertices
Models and issues in data stream systems
 IN PODS
, 2002
"... In this overview paper we motivate the need for and research issues arising from a new model of data processing. In this model, data does not take the form of persistent relations, but rather arrives in multiple, continuous, rapid, timevarying data streams. In addition to reviewing past work releva ..."
Abstract

Cited by 770 (19 self)
 Add to MetaCart
In this overview paper we motivate the need for and research issues arising from a new model of data processing. In this model, data does not take the form of persistent relations, but rather arrives in multiple, continuous, rapid, timevarying data streams. In addition to reviewing past work
SPECTRAL SPARSIFICATION IN THE SEMISTREAMING SETTING
"... Abstract. Let G be a graph with n vertices and m edges. A sparsifier of G is a sparse graph on the same vertex set approximating G in some natural way. It allows us to say useful things about G while considering much fewer than m edges. The strongest commonlyused notion of sparsification is spectra ..."
Abstract

Cited by 18 (1 self)
 Add to MetaCart
is spectral sparsification; H is a spectral sparsifier of G if the quadratic forms induced by the Laplacians of G and H approximate one another well. This notion is strictly stronger than the earlier concept of combinatorial sparsification. In this paper, we consider a semistreaming setting, where we have
Factor Graphs and the SumProduct Algorithm
 IEEE TRANSACTIONS ON INFORMATION THEORY
, 1998
"... A factor graph is a bipartite graph that expresses how a "global" function of many variables factors into a product of "local" functions. Factor graphs subsume many other graphical models including Bayesian networks, Markov random fields, and Tanner graphs. Following one simple c ..."
Abstract

Cited by 1787 (72 self)
 Add to MetaCart
A factor graph is a bipartite graph that expresses how a "global" function of many variables factors into a product of "local" functions. Factor graphs subsume many other graphical models including Bayesian networks, Markov random fields, and Tanner graphs. Following one simple
SplitStream: HighBandwidth Multicast in Cooperative Environments
 SOSP '03
, 2003
"... In treebased multicast systems, a relatively small number of interior nodes carry the load of forwarding multicast messages. This works well when the interior nodes are highly available, d d cated infrastructure routers but it poses a problem for applicationlevel multicast in peertopeer systems. ..."
Abstract

Cited by 570 (17 self)
 Add to MetaCart
. SplitStreamadV esses this problem by striping the content across a forest of interiornodno# sjoint multicast trees that d stributes the forward ng load among all participating peers. For example, it is possible to construct efficient SplitStream forests in which each peer contributes only as much
The program dependence graph and its use in optimization
 ACM Transactions on Programming Languages and Systems
, 1987
"... In this paper we present an intermediate program representation, called the program dependence graph (PDG), that makes explicit both the data and control dependence5 for each operation in a program. Data dependences have been used to represent only the relevant data flow relationships of a program. ..."
Abstract

Cited by 989 (3 self)
 Add to MetaCart
In this paper we present an intermediate program representation, called the program dependence graph (PDG), that makes explicit both the data and control dependence5 for each operation in a program. Data dependences have been used to represent only the relevant data flow relationships of a program
Graphs over Time: Densification Laws, Shrinking Diameters and Possible Explanations
, 2005
"... How do real graphs evolve over time? What are “normal” growth patterns in social, technological, and information networks? Many studies have discovered patterns in static graphs, identifying properties in a single snapshot of a large network, or in a very small number of snapshots; these include hea ..."
Abstract

Cited by 534 (48 self)
 Add to MetaCart
How do real graphs evolve over time? What are “normal” growth patterns in social, technological, and information networks? Many studies have discovered patterns in static graphs, identifying properties in a single snapshot of a large network, or in a very small number of snapshots; these include
Results 1  10
of
253,572