Results 1  10
of
103,516
Spectral learning
 In IJCAI
, 2003
"... We present a simple, easily implemented spectral learning algorithm which applies equally whether we have no supervisory information, pairwise link constraints, or labeled examples. In the unsupervised case, it performs consistently with other spectral clustering algorithms. In the supervised case, ..."
Abstract

Cited by 106 (5 self)
 Add to MetaCart
We present a simple, easily implemented spectral learning algorithm which applies equally whether we have no supervisory information, pairwise link constraints, or labeled examples. In the unsupervised case, it performs consistently with other spectral clustering algorithms. In the supervised case
On spectral learning
 JOURNAL OF MACHINE LEARNING RESEARCH
, 2010
"... In this paper, we study the problem of learning a matrix W from a set of linear measurements. Our formulation consists in solving an optimization problem which involves regularization with a spectral penalty term. That is, the penalty term is a function of the spectrum of the covariance of W. Instan ..."
Abstract

Cited by 19 (3 self)
 Add to MetaCart
In this paper, we study the problem of learning a matrix W from a set of linear measurements. Our formulation consists in solving an optimization problem which involves regularization with a spectral penalty term. That is, the penalty term is a function of the spectrum of the covariance of W
On Spectral Learning of Mixtures of Distributions
"... We consider the problem of learning mixtures of distributions via spectral methods and derive a tight characterization of when such methods are useful. Specifically, given a mixturesample, let i , C i , w i denote the empirical mean, covariance matrix, and mixing weight of the ith component. We ..."
Abstract

Cited by 79 (0 self)
 Add to MetaCart
We consider the problem of learning mixtures of distributions via spectral methods and derive a tight characterization of when such methods are useful. Specifically, given a mixturesample, let i , C i , w i denote the empirical mean, covariance matrix, and mixing weight of the ith component
On Spectral Clustering: Analysis and an algorithm
 ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS
, 2001
"... Despite many empirical successes of spectral clustering methods  algorithms that cluster points using eigenvectors of matrices derived from the distances between the points  there are several unresolved issues. First, there is a wide variety of algorithms that use the eigenvectors in slightly ..."
Abstract

Cited by 1697 (13 self)
 Add to MetaCart
Despite many empirical successes of spectral clustering methods  algorithms that cluster points using eigenvectors of matrices derived from the distances between the points  there are several unresolved issues. First, there is a wide variety of algorithms that use the eigenvectors
Laplacian Eigenmaps and Spectral Techniques for Embedding and Clustering
 Advances in Neural Information Processing Systems 14
, 2001
"... Drawing on the correspondence between the graph Laplacian, the LaplaceBeltrami operator on a manifold, and the connections to the heat equation, we propose a geometrically motivated algorithm for constructing a representation for data sampled from a low dimensional manifold embedded in a higher ..."
Abstract

Cited by 664 (8 self)
 Add to MetaCart
Drawing on the correspondence between the graph Laplacian, the LaplaceBeltrami operator on a manifold, and the connections to the heat equation, we propose a geometrically motivated algorithm for constructing a representation for data sampled from a low dimensional manifold embedded in a higher dimensional space. The algorithm provides a computationally efficient approach to nonlinear dimensionality reduction that has locality preserving properties and a natural connection to clustering. Several applications are considered.
Spectral learning of latentvariable PCFGs
, 2012
"... We introduce a spectral learning algorithm for latentvariable PCFGs (Petrov et al., 2006). Under a separability (singular value) condition, we prove that the method provides consistent parameter estimates. 1 ..."
Abstract

Cited by 28 (10 self)
 Add to MetaCart
We introduce a spectral learning algorithm for latentvariable PCFGs (Petrov et al., 2006). Under a separability (singular value) condition, we prove that the method provides consistent parameter estimates. 1
Locally weighted learning
 ARTIFICIAL INTELLIGENCE REVIEW
, 1997
"... This paper surveys locally weighted learning, a form of lazy learning and memorybased learning, and focuses on locally weighted linear regression. The survey discusses distance functions, smoothing parameters, weighting functions, local model structures, regularization of the estimates and bias, ass ..."
Abstract

Cited by 594 (53 self)
 Add to MetaCart
This paper surveys locally weighted learning, a form of lazy learning and memorybased learning, and focuses on locally weighted linear regression. The survey discusses distance functions, smoothing parameters, weighting functions, local model structures, regularization of the estimates and bias
SemiSupervised Learning Literature Survey
, 2006
"... We review the literature on semisupervised learning, which is an area in machine learning and more generally, artificial intelligence. There has been a whole
spectrum of interesting ideas on how to learn from both labeled and unlabeled data, i.e. semisupervised learning. This document is a chapter ..."
Abstract

Cited by 757 (8 self)
 Add to MetaCart
We review the literature on semisupervised learning, which is an area in machine learning and more generally, artificial intelligence. There has been a whole
spectrum of interesting ideas on how to learn from both labeled and unlabeled data, i.e. semisupervised learning. This document is a
A Sober Look at Spectral Learning
"... Spectral learning recently generated lots of excitement in machine learning, largely because it is the first known method to produce consistent estimates (under suitable conditions) for several latent variable models. In contrast, maximum likelihood estimates may get trapped in local optima due ..."
Abstract
 Add to MetaCart
Spectral learning recently generated lots of excitement in machine learning, largely because it is the first known method to produce consistent estimates (under suitable conditions) for several latent variable models. In contrast, maximum likelihood estimates may get trapped in local optima due
Results 1  10
of
103,516