Results 11  20
of
3,096
Adaptive Subgradient Methods for Online Learning and Stochastic Optimization
, 2010
"... Stochastic subgradient methods are widely used, well analyzed, and constitute effective tools for optimization and online learning. Stochastic gradient methods ’ popularity and appeal are largely due to their simplicity, as they largely follow predetermined procedural schemes. However, most common s ..."
Abstract

Cited by 311 (3 self)
 Add to MetaCart
Stochastic subgradient methods are widely used, well analyzed, and constitute effective tools for optimization and online learning. Stochastic gradient methods ’ popularity and appeal are largely due to their simplicity, as they largely follow predetermined procedural schemes. However, most common
Sparse signal reconstruction from limited data using FOCUSS: A reweighted minimum norm algorithm
 IEEE TRANS. SIGNAL PROCESSING
, 1997
"... We present a nonparametric algorithm for finding localized energy solutions from limited data. The problem we address is underdetermined, and no prior knowledge of the shape of the region on which the solution is nonzero is assumed. Termed the FOcal Underdetermined System Solver (FOCUSS), the algor ..."
Abstract

Cited by 368 (22 self)
 Add to MetaCart
view of the algorithm as a novel optimization method which combines desirable characteristics of both classical optimization and learningbased algorithms is provided. Mathematical results on conditions for uniqueness of sparse solutions are also given. Applications of the algorithm are illustrated
Prioritized sweeping: Reinforcement learning with less data and less time
 Machine Learning
, 1993
"... We present a new algorithm, Prioritized Sweeping, for e cient prediction and control of stochastic Markov systems. Incremental learning methods such asTemporal Di erencing and Qlearning have fast real time performance. Classical methods are slower, but more accurate, because they make full use of ..."
Abstract

Cited by 378 (6 self)
 Add to MetaCart
We present a new algorithm, Prioritized Sweeping, for e cient prediction and control of stochastic Markov systems. Incremental learning methods such asTemporal Di erencing and Qlearning have fast real time performance. Classical methods are slower, but more accurate, because they make full use
Multiagent Reinforcement Learning: Theoretical Framework and an Algorithm
, 1998
"... In this paper, we adopt generalsum stochastic games as a framework for multiagent reinforcement learning. Our work extends previous work by Littman on zerosum stochastic games to a broader framework. We design a multiagent Qlearning method under this framework, and prove that it converges to a Na ..."
Abstract

Cited by 331 (4 self)
 Add to MetaCart
In this paper, we adopt generalsum stochastic games as a framework for multiagent reinforcement learning. Our work extends previous work by Littman on zerosum stochastic games to a broader framework. We design a multiagent Qlearning method under this framework, and prove that it converges to a
Peer Effects in the Classroom: Learning from Gender and Race Variation
, 2000
"... Peer effects are potentially important for understanding the optimal organization of schools, jobs, and neighborhoods, but finding evidence is difficult because people are selected into peer groups based, in part, on their unobservable characteristics. I identify the effects of peers whom a child en ..."
Abstract

Cited by 335 (4 self)
 Add to MetaCart
Peer effects are potentially important for understanding the optimal organization of schools, jobs, and neighborhoods, but finding evidence is difficult because people are selected into peer groups based, in part, on their unobservable characteristics. I identify the effects of peers whom a child
A sparse sampling algorithm for nearoptimal planning in large Markov decision processes
 Machine Learning
, 1999
"... An issue that is critical for the application of Markov decision processes (MDPs) to realistic problems is how the complexity of planning scales with the size of the MDP. In stochastic environments with very large or even innite state spaces, traditional planning and reinforcement learning algorith ..."
Abstract

Cited by 239 (7 self)
 Add to MetaCart
An issue that is critical for the application of Markov decision processes (MDPs) to realistic problems is how the complexity of planning scales with the size of the MDP. In stochastic environments with very large or even innite state spaces, traditional planning and reinforcement learning
RMAX  A General Polynomial Time Algorithm for NearOptimal Reinforcement Learning
, 2001
"... Rmax is a very simple modelbased reinforcement learning algorithm which can attain nearoptimal average reward in polynomial time. In Rmax, the agent always maintains a complete, but possibly inaccurate model of its environment and acts based on the optimal policy derived from this model. The mod ..."
Abstract

Cited by 297 (10 self)
 Add to MetaCart
Rmax is a very simple modelbased reinforcement learning algorithm which can attain nearoptimal average reward in polynomial time. In Rmax, the agent always maintains a complete, but possibly inaccurate model of its environment and acts based on the optimal policy derived from this model
Learning Bayesian network structure from massive datasets: the “sparse candidate” algorithm
 In Proceedings of the 15th Conference on Uncertainty in Artificial Intelligence (UAI
, 1999
"... Learning Bayesian networks is often cast as an optimization problem, where the computational task is to find a structure that maximizes a statistically motivated score. By and large, existing learning tools address this optimization problem using standard heuristic search techniques. Since the sear ..."
Abstract

Cited by 247 (7 self)
 Add to MetaCart
Learning Bayesian networks is often cast as an optimization problem, where the computational task is to find a structure that maximizes a statistically motivated score. By and large, existing learning tools address this optimization problem using standard heuristic search techniques. Since
Machine Learning Research: Four Current Directions
, 1997
"... Machine Learning research has been making great progress in many directions. This article summarizes four of these directions and discusses some current open problems. The four directions are (a) improving classification accuracy by learning ensembles of classifiers, (b) methods for scaling up super ..."
Abstract

Cited by 287 (0 self)
 Add to MetaCart
supervised learning algorithms, (c) reinforcement learning, and (d) learning complex stochastic models. 1 Introduction The last five years have seen an explosion in machine learning research. This explosion has many causes. First, separate research communities in symbolic machine learning, computational
Sparse Greedy Matrix Approximation for Machine Learning
, 2000
"... In kernel based methods such as Regularization Networks large datasets pose signi cant problems since the number of basis functions required for an optimal solution equals the number of samples. We present a sparse greedy approximation technique to construct a compressed representation of the ..."
Abstract

Cited by 222 (10 self)
 Add to MetaCart
In kernel based methods such as Regularization Networks large datasets pose signi cant problems since the number of basis functions required for an optimal solution equals the number of samples. We present a sparse greedy approximation technique to construct a compressed representation
Results 11  20
of
3,096