Results 1 - 10
of
2,558,541
The Nature of Statistical Learning Theory
, 1999
"... Statistical learning theory was introduced in the late 1960’s. Until the 1990’s it was a purely theoretical analysis of the problem of function estimation from a given collection of data. In the middle of the 1990’s new types of learning algorithms (called support vector machines) based on the deve ..."
Abstract
-
Cited by 13236 (32 self)
- Add to MetaCart
theoretical and algorithmic aspects of the theory. The goal of this overview is to demonstrate how the abstract learning theory established conditions for generalization which are more general than those discussed in classical statistical paradigms and how the understanding of these conditions inspired new
Non-negative matrix factorization with sparseness constraints,”
- Journal of Machine Learning Research,
, 2004
"... Abstract Non-negative matrix factorization (NMF) is a recently developed technique for finding parts-based, linear representations of non-negative data. Although it has successfully been applied in several applications, it does not always result in parts-based representations. In this paper, we sho ..."
Abstract
-
Cited by 498 (0 self)
- Add to MetaCart
Abstract Non-negative matrix factorization (NMF) is a recently developed technique for finding parts-based, linear representations of non-negative data. Although it has successfully been applied in several applications, it does not always result in parts-based representations. In this paper, we
Robust face recognition via sparse representation
- IEEE TRANS. PATTERN ANALYSIS AND MACHINE INTELLIGENCE
, 2008
"... We consider the problem of automatically recognizing human faces from frontal views with varying expression and illumination, as well as occlusion and disguise. We cast the recognition problem as one of classifying among multiple linear regression models, and argue that new theory from sparse signa ..."
Abstract
-
Cited by 936 (40 self)
- Add to MetaCart
signal representation offers the key to addressing this problem. Based on a sparse representation computed by ℓ 1-minimization, we propose a general classification algorithm for (image-based) object recognition. This new framework provides new insights into two crucial issues in face recognition: feature
Greed is Good: Algorithmic Results for Sparse Approximation
, 2004
"... This article presents new results on using a greedy algorithm, orthogonal matching pursuit (OMP), to solve the sparse approximation problem over redundant dictionaries. It provides a sufficient condition under which both OMP and Donoho’s basis pursuit (BP) paradigm can recover the optimal representa ..."
Abstract
-
Cited by 916 (9 self)
- Add to MetaCart
This article presents new results on using a greedy algorithm, orthogonal matching pursuit (OMP), to solve the sparse approximation problem over redundant dictionaries. It provides a sufficient condition under which both OMP and Donoho’s basis pursuit (BP) paradigm can recover the optimal
Sparse MRI: The Application of Compressed Sensing for Rapid MR Imaging
- MAGNETIC RESONANCE IN MEDICINE 58:1182–1195
, 2007
"... The sparsity which is implicit in MR images is exploited to significantly undersample k-space. Some MR images such as angiograms are already sparse in the pixel representation; other, more complicated images have a sparse representation in some transform domain–for example, in terms of spatial finit ..."
Abstract
-
Cited by 538 (11 self)
- Add to MetaCart
The sparsity which is implicit in MR images is exploited to significantly undersample k-space. Some MR images such as angiograms are already sparse in the pixel representation; other, more complicated images have a sparse representation in some transform domain–for example, in terms of spatial
K-SVD: An Algorithm for Designing Overcomplete Dictionaries for Sparse Representation
, 2006
"... In recent years there has been a growing interest in the study of sparse representation of signals. Using an overcomplete dictionary that contains prototype signal-atoms, signals are described by sparse linear combinations of these atoms. Applications that use sparse representation are many and inc ..."
Abstract
-
Cited by 935 (41 self)
- Add to MetaCart
In recent years there has been a growing interest in the study of sparse representation of signals. Using an overcomplete dictionary that contains prototype signal-atoms, signals are described by sparse linear combinations of these atoms. Applications that use sparse representation are many
Optimally sparse representation in general (non-orthogonal) dictionaries via ℓ¹ minimization
- PROC. NATL ACAD. SCI. USA 100 2197–202
, 2002
"... Given a ‘dictionary’ D = {dk} of vectors dk, we seek to represent a signal S as a linear combination S = ∑ k γ(k)dk, with scalar coefficients γ(k). In particular, we aim for the sparsest representation possible. In general, this requires a combinatorial optimization process. Previous work considered ..."
Abstract
-
Cited by 633 (38 self)
- Add to MetaCart
considered the special case where D is an overcomplete system consisting of exactly two orthobases, and has shown that, under a condition of mutual incoherence of the two bases, and assuming that S has a sufficiently sparse representation, this representation is unique and can be found by solving a convex
Using collaborative filtering to weave an information tapestry
- Communications of the ACM
, 1992
"... predicated on the belief that information filtering can be more effective when humans are involved in the filtering process. Tapestry was designed to support both content-based filtering and collaborative filtering, which entails people collaborating to help each other perform filtering by recording ..."
Abstract
-
Cited by 953 (4 self)
- Add to MetaCart
predicated on the belief that information filtering can be more effective when humans are involved in the filtering process. Tapestry was designed to support both content-based filtering and collaborative filtering, which entails people collaborating to help each other perform filtering
A message ferrying approach for data delivery in sparse mobile ad hoc networks
- In Proc. of ACM Mobihoc
, 2004
"... Mobile Ad Hoc Networks (MANETs) provide rapidly deployable and self-configuring network capacity required in many critical applications, e.g., battlefields, disaster relief and wide area sensing. In this paper we study the problem of efficient data delivery in sparse MANETs where network partitions ..."
Abstract
-
Cited by 498 (14 self)
- Add to MetaCart
Mobile Ad Hoc Networks (MANETs) provide rapidly deployable and self-configuring network capacity required in many critical applications, e.g., battlefields, disaster relief and wide area sensing. In this paper we study the problem of efficient data delivery in sparse MANETs where network partitions
Sparse Bayesian Learning and the Relevance Vector Machine
, 2001
"... This paper introduces a general Bayesian framework for obtaining sparse solutions to regression and classification tasks utilising models linear in the parameters. Although this framework is fully general, we illustrate our approach with a particular specialisation that we denote the `relevance vect ..."
Abstract
-
Cited by 966 (5 self)
- Add to MetaCart
This paper introduces a general Bayesian framework for obtaining sparse solutions to regression and classification tasks utilising models linear in the parameters. Although this framework is fully general, we illustrate our approach with a particular specialisation that we denote the `relevance
Results 1 - 10
of
2,558,541