Results 1  10
of
353,521
gSpan: GraphBased Substructure Pattern Mining
, 2002
"... We investigate new approaches for frequent graphbased pattern mining in graph datasets and propose a novel algorithm called gSpan (graphbased Substructure pattern mining) , which discovers frequent substructures without candidate generation. gSpan builds a new lexicographic order among graphs, and ..."
Abstract

Cited by 639 (34 self)
 Add to MetaCart
We investigate new approaches for frequent graphbased pattern mining in graph datasets and propose a novel algorithm called gSpan (graphbased Substructure pattern mining) , which discovers frequent substructures without candidate generation. gSpan builds a new lexicographic order among graphs
Community detection in graphs
, 2009
"... The modern science of networks has brought significant advances to our understanding of complex systems. One of the most relevant features of graphs representing real systems is community structure, or clustering, i. e. the organization of vertices in clusters, with many edges joining vertices of th ..."
Abstract

Cited by 801 (1 self)
 Add to MetaCart
The modern science of networks has brought significant advances to our understanding of complex systems. One of the most relevant features of graphs representing real systems is community structure, or clustering, i. e. the organization of vertices in clusters, with many edges joining vertices
Factor Graphs and the SumProduct Algorithm
 IEEE TRANSACTIONS ON INFORMATION THEORY
, 1998
"... A factor graph is a bipartite graph that expresses how a "global" function of many variables factors into a product of "local" functions. Factor graphs subsume many other graphical models including Bayesian networks, Markov random fields, and Tanner graphs. Following one simple c ..."
Abstract

Cited by 1787 (72 self)
 Add to MetaCart
A factor graph is a bipartite graph that expresses how a "global" function of many variables factors into a product of "local" functions. Factor graphs subsume many other graphical models including Bayesian networks, Markov random fields, and Tanner graphs. Following one simple
The program dependence graph and its use in optimization
 ACM Transactions on Programming Languages and Systems
, 1987
"... In this paper we present an intermediate program representation, called the program dependence graph (PDG), that makes explicit both the data and control dependence5 for each operation in a program. Data dependences have been used to represent only the relevant data flow relationships of a program. ..."
Abstract

Cited by 989 (3 self)
 Add to MetaCart
In this paper we present an intermediate program representation, called the program dependence graph (PDG), that makes explicit both the data and control dependence5 for each operation in a program. Data dependences have been used to represent only the relevant data flow relationships of a program
Graphs over Time: Densification Laws, Shrinking Diameters and Possible Explanations
, 2005
"... How do real graphs evolve over time? What are “normal” growth patterns in social, technological, and information networks? Many studies have discovered patterns in static graphs, identifying properties in a single snapshot of a large network, or in a very small number of snapshots; these include hea ..."
Abstract

Cited by 534 (48 self)
 Add to MetaCart
How do real graphs evolve over time? What are “normal” growth patterns in social, technological, and information networks? Many studies have discovered patterns in static graphs, identifying properties in a single snapshot of a large network, or in a very small number of snapshots; these include
A distributed algorithm for minimumweight spanning trees
, 1983
"... A distributed algorithm is presented that constructs he minimumweight spanning tree in a connected undirected graph with distinct edge weights. A processor exists at each node of the graph, knowing initially only the weights of the adjacent edges. The processors obey the same algorithm and exchange ..."
Abstract

Cited by 443 (3 self)
 Add to MetaCart
A distributed algorithm is presented that constructs he minimumweight spanning tree in a connected undirected graph with distinct edge weights. A processor exists at each node of the graph, knowing initially only the weights of the adjacent edges. The processors obey the same algorithm
The Architecture of Cognition
, 1983
"... Spanning seven orders of magnitude: a challenge for ..."
Abstract

Cited by 1580 (40 self)
 Add to MetaCart
Spanning seven orders of magnitude: a challenge for
A Separator Theorem for Planar Graphs
, 1977
"... Let G be any nvertex planar graph. We prove that the vertices of G can be partitioned into three sets A, B, C such that no edge joins a vertex in A with a vertex in B, neither A nor B contains more than 2n/3 vertices, and C contains no more than 2& & vertices. We exhibit an algorithm which ..."
Abstract

Cited by 465 (1 self)
 Add to MetaCart
Let G be any nvertex planar graph. We prove that the vertices of G can be partitioned into three sets A, B, C such that no edge joins a vertex in A with a vertex in B, neither A nor B contains more than 2n/3 vertices, and C contains no more than 2& & vertices. We exhibit an algorithm which
Results 1  10
of
353,521