Results 1  10
of
1,392,852
Some LinearTime Algorithms for Systolic Arrays
, 2000
"... We survey some recent results on lineartime algorithms for systolic arrays. In particular, we show how the greatest common divisor (GCD) of two polynomials of degree n over a finite field can be computed in time O(n) on a linear systolic array of O(n) cells; similarly for the GCD of two nbit binar ..."
Abstract

Cited by 12 (7 self)
 Add to MetaCart
We survey some recent results on lineartime algorithms for systolic arrays. In particular, we show how the greatest common divisor (GCD) of two polynomials of degree n over a finite field can be computed in time O(n) on a linear systolic array of O(n) cells; similarly for the GCD of two n
Some LinearTime Algorithms for Systolic Arrays ∗
"... We survey some recent results on lineartime algorithms for systolic arrays. In particular, we show how the greatest common divisor (GCD) of two polynomials of degree n over a finite field can be computed in time O(n) on a linear systolic array of O(n) cells; similarly for the GCD of two nbit binar ..."
Abstract
 Add to MetaCart
We survey some recent results on lineartime algorithms for systolic arrays. In particular, we show how the greatest common divisor (GCD) of two polynomials of degree n over a finite field can be computed in time O(n) on a linear systolic array of O(n) cells; similarly for the GCD of two n
Some LinearTime Algorithms for Systolic Arrays∗
"... We survey some recent results on lineartime algorithms for systolic arrays. In particular, we show how the greatest common divisor (GCD) of two polynomials of degree n over a finite field can be computed in time O(n) on a linear systolic array of O(n) cells; similarly for the GCD of two nbit binar ..."
Abstract
 Add to MetaCart
We survey some recent results on lineartime algorithms for systolic arrays. In particular, we show how the greatest common divisor (GCD) of two polynomials of degree n over a finite field can be computed in time O(n) on a linear systolic array of O(n) cells; similarly for the GCD of two n
Some LinearTime Algorithms for Systolic Arrays ∗
"... We survey some recent results on lineartime algorithms for systolic arrays. In particular, we show how the greatest common divisor (GCD) of two polynomials of degree n over a finite field can be computed in time O(n) on a linear systolic array of O(n) cells; similarly for the GCD of two nbit binar ..."
Abstract
 Add to MetaCart
We survey some recent results on lineartime algorithms for systolic arrays. In particular, we show how the greatest common divisor (GCD) of two polynomials of degree n over a finite field can be computed in time O(n) on a linear systolic array of O(n) cells; similarly for the GCD of two n
Some LinearTime Algorithms for Systolic Arrays*
"... Abstract We survey some recent results on lineartime algorithms for systolic arrays. In particular, weshow how the greatest common divisor (GCD) of two polynomials of degree n over a finitefield can be computed in time O(n) on a linear systolic array of O(n) cells; similarly for theGCD of two nbit ..."
Abstract
 Add to MetaCart
Abstract We survey some recent results on lineartime algorithms for systolic arrays. In particular, weshow how the greatest common divisor (GCD) of two polynomials of degree n over a finitefield can be computed in time O(n) on a linear systolic array of O(n) cells; similarly for theGCD of two n
Some LinearTime Algorithms for Systolic Arrays ∗
, 1004
"... We survey some recent results on lineartime algorithms for systolic arrays. In particular, we show how the greatest common divisor (GCD) of two polynomials of degree n over a finite field can be computed in time O(n) on a linear systolic array of O(n) cells; similarly for the GCD of two nbit binar ..."
Abstract
 Add to MetaCart
We survey some recent results on lineartime algorithms for systolic arrays. In particular, we show how the greatest common divisor (GCD) of two polynomials of degree n over a finite field can be computed in time O(n) on a linear systolic array of O(n) cells; similarly for the GCD of two n
Randomized Algorithms
, 1995
"... Randomized algorithms, once viewed as a tool in computational number theory, have by now found widespread application. Growth has been fueled by the two major benefits of randomization: simplicity and speed. For many applications a randomized algorithm is the fastest algorithm available, or the simp ..."
Abstract

Cited by 2210 (37 self)
 Add to MetaCart
, or the simplest, or both. A randomized algorithm is an algorithm that uses random numbers to influence the choices it makes in the course of its computation. Thus its behavior (typically quantified as running time or quality of output) varies from
Planning Algorithms
, 2004
"... This book presents a unified treatment of many different kinds of planning algorithms. The subject lies at the crossroads between robotics, control theory, artificial intelligence, algorithms, and computer graphics. The particular subjects covered include motion planning, discrete planning, planning ..."
Abstract

Cited by 1108 (51 self)
 Add to MetaCart
This book presents a unified treatment of many different kinds of planning algorithms. The subject lies at the crossroads between robotics, control theory, artificial intelligence, algorithms, and computer graphics. The particular subjects covered include motion planning, discrete planning
Suffix arrays: A new method for online string searches
, 1991
"... A new and conceptually simple data structure, called a suffix array, for online string searches is introduced in this paper. Constructing and querying suffix arrays is reduced to a sort and search paradigm that employs novel algorithms. The main advantage of suffix arrays over suffix trees is that ..."
Abstract

Cited by 827 (0 self)
 Add to MetaCart
in some cases slightly better than) suffix trees. The only drawback is that in those instances where the underlying alphabet is finite and small, suffix trees can be constructed in O(N) time in the worst case, versus O(N log N) time for suffix arrays. However, we give an augmented algorithm that
Linear pattern matching algorithms
 IN PROCEEDINGS OF THE 14TH ANNUAL IEEE SYMPOSIUM ON SWITCHING AND AUTOMATA THEORY. IEEE
, 1972
"... In 1970, Knuth, Pratt, and Morris [1] showed how to do basic pattern matching in linear time. Related problems, such as those discussed in [4], have previously been solved by efficient but suboptimal algorithms. In this paper, we introduce an interesting data structure called a bitree. A linear ti ..."
Abstract

Cited by 549 (0 self)
 Add to MetaCart
time algorithm for obtaining a compacted version of a bitree associated with a given string is presented. With this construction as the basic tool, we indicate how to solve several pattern matching problems, including some from [4], in linear time.
Results 1  10
of
1,392,852