Results 1  10
of
1,643
Parallel Numerical Linear Algebra
, 1993
"... We survey general techniques and open problems in numerical linear algebra on parallel architectures. We first discuss basic principles of parallel processing, describing the costs of basic operations on parallel machines, including general principles for constructing efficient algorithms. We illust ..."
Abstract

Cited by 773 (23 self)
 Add to MetaCart
illustrate these principles using current architectures and software systems, and by showing how one would implement matrix multiplication. Then, we present direct and iterative algorithms for solving linear systems of equations, linear least squares problems, the symmetric eigenvalue problem
Sequential minimal optimization: A fast algorithm for training support vector machines
 Advances in Kernel MethodsSupport Vector Learning
, 1999
"... This paper proposes a new algorithm for training support vector machines: Sequential Minimal Optimization, or SMO. Training a support vector machine requires the solution of a very large quadratic programming (QP) optimization problem. SMO breaks this large QP problem into a series of smallest possi ..."
Abstract

Cited by 461 (3 self)
 Add to MetaCart
possible QP problems. These small QP problems are solved analytically, which avoids using a timeconsuming numerical QP optimization as an inner loop. The amount of memory required for SMO is linear in the training set size, which allows SMO to handle very large training sets. Because matrix computation
The Determinants of Credit Spread Changes.
 Journal of Finance
, 2001
"... ABSTRACT Using dealer's quotes and transactions prices on straight industrial bonds, we investigate the determinants of credit spread changes. Variables that should in theory determine credit spread changes have rather limited explanatory power. Further, the residuals from this regression are ..."
Abstract

Cited by 422 (2 self)
 Add to MetaCart
are highly crosscorrelated, and principal components analysis implies that they are mostly driven by a single common factor. An important implication of this finding is that if any explanatory variables have been omitted, they are likely not firmspecific. We therefore rerun the regression, but 1 this time
External Memory Algorithms and Data Structures
, 1998
"... Data sets in large applications are often too massive to fit completely inside the computer's internal memory. The resulting input/output communication (or I/O) between fast internal memory and slower external memory (such as disks) can be a major performance bottleneck. In this paper, we surve ..."
Abstract

Cited by 349 (23 self)
 Add to MetaCart
using the parallel disk model (PDM). The three machineindependent measures of performance in PDM are the number of I/O operations, the CPU time, and the amount of disk space. PDM allows for multiple disks (or disk arrays) and parallel CPUs, and it can be generalized to handle tertiary storage
A Sparse Signal Reconstruction Perspective for Source Localization With Sensor Arrays
, 2005
"... We present a source localization method based on a sparse representation of sensor measurements with an overcomplete basis composed of samples from the array manifold. We enforce sparsity by imposing penalties based on the 1norm. A number of recent theoretical results on sparsifying properties of ..."
Abstract

Cited by 231 (6 self)
 Add to MetaCart
of 1 penalties justify this choice. Explicitly enforcing the sparsity of the representation is motivated by a desire to obtain a sharp estimate of the spatial spectrum that exhibits superresolution. We propose to use the singular value decomposition (SVD) of the data matrix to summarize multiple time
Quality Driven Web Services Composition
, 2003
"... The processdriven composition of Web services is emerging as a promising approach to integrate business applications within and across organizational boundaries. In this approach, individual Web services are federated into composite Web services whose business logic is expressed as a process model. ..."
Abstract

Cited by 230 (7 self)
 Add to MetaCart
constraints). Accordingly, the paper proposes a global planning approach to optimally select component services during the execution of a composite service. Service selection is formulated as an optimization problem which can be solved using efficient linear programming methods. Experimental results show
A Toolkit for Analyzing Nonlinear Dynamic Stochastic Models Easily
"... Often, researchers wish to analyze nonlinear dynamic discretetime stochastic models. This chapter provides a toolkit for solving such models easily, building on loglinearizing the necessary equations characterizing the equilibrium and solving for the recursive equilibrium law of motion with the me ..."
Abstract

Cited by 216 (2 self)
 Add to MetaCart
Often, researchers wish to analyze nonlinear dynamic discretetime stochastic models. This chapter provides a toolkit for solving such models easily, building on loglinearizing the necessary equations characterizing the equilibrium and solving for the recursive equilibrium law of motion
Fast Approximation Algorithms for Multicommodity Flow Problems
 JOURNAL OF COMPUTER AND SYSTEM SCIENCES
, 1991
"... All previously known algorithms for solving the multicommodity flow problem with capacities are based on linear programming. The best of these algorithms [15] uses a fast matrix multiplication algorithm and takes O(k 3:5 n 3 m :5 log(nDU )) time for the multicommodity flow problem with inte ..."
Abstract

Cited by 191 (21 self)
 Add to MetaCart
All previously known algorithms for solving the multicommodity flow problem with capacities are based on linear programming. The best of these algorithms [15] uses a fast matrix multiplication algorithm and takes O(k 3:5 n 3 m :5 log(nDU )) time for the multicommodity flow problem
Incremental Pruning: A Simple, Fast, Exact Method for Partially Observable Markov Decision Processes
 In Proceedings of the Thirteenth Conference on Uncertainty in Artificial Intelligence
, 1997
"... Most exact algorithms for general partially observable Markov decision processes (pomdps) use a form of dynamic programming in which a piecewiselinear and convex representation of one value function is transformed into another. We examine variations of the "incremental pruning" method for ..."
Abstract

Cited by 202 (13 self)
 Add to MetaCart
Most exact algorithms for general partially observable Markov decision processes (pomdps) use a form of dynamic programming in which a piecewiselinear and convex representation of one value function is transformed into another. We examine variations of the "incremental pruning" method
Efficient sparse matrixvector multiplication on CUDA
, 2008
"... The massive parallelism of graphics processing units (GPUs) offers tremendous performance in many highperformance computing applications. While dense linear algebra readily maps to such platforms, harnessing this potential for sparse matrix computations presents additional challenges. Given its rol ..."
Abstract

Cited by 113 (2 self)
 Add to MetaCart
role in iterative methods for solving sparse linear systems and eigenvalue problems, sparse matrixvector multiplication (SpMV) is of singular importance in sparse linear algebra. In this paper we discuss data structures and algorithms for SpMV that are efficiently implemented on the CUDA platform
Results 1  10
of
1,643