Results 1  10
of
246,719
Optimal Unsupervised Learning in a SingleLayer Linear Feedforward Neural Network
, 1989
"... A new approach to unsupervised learning in a singlelayer linear feedforward neural network is discussed. An optimality principle is proposed which is based upon preserving maximal information in the output units. An algorithm for unsupervised learning based upon a Hebbian learning rule, which achie ..."
Abstract

Cited by 290 (2 self)
 Add to MetaCart
A new approach to unsupervised learning in a singlelayer linear feedforward neural network is discussed. An optimality principle is proposed which is based upon preserving maximal information in the output units. An algorithm for unsupervised learning based upon a Hebbian learning rule, which
An Analysis of SingleLayer Networks in Unsupervised Feature Learning
"... A great deal of research has focused on algorithms for learning features from unlabeled data. Indeed, much progress has been made on benchmark datasets like NORB and CIFAR by employing increasingly complex unsupervised learning algorithms and deep models. In this paper, however, we show that several ..."
Abstract

Cited by 209 (19 self)
 Add to MetaCart
and Kmeans clustering, Gaussian mixtures) to NORB and CIFAR datasets using only singlelayer networks. We then present a detailed analysis of the effect of changes in the model setup: the receptive field size, number of hidden nodes (features), the stepsize (“stride”) between extracted features
Evolving Neural Networks through Augmenting Topologies
 Evolutionary Computation
"... An important question in neuroevolution is how to gain an advantage from evolving neural network topologies along with weights. We present a method, NeuroEvolution of Augmenting Topologies (NEAT), which outperforms the best fixedtopology method on a challenging benchmark reinforcement learning task ..."
Abstract

Cited by 524 (113 self)
 Add to MetaCart
An important question in neuroevolution is how to gain an advantage from evolving neural network topologies along with weights. We present a method, NeuroEvolution of Augmenting Topologies (NEAT), which outperforms the best fixedtopology method on a challenging benchmark reinforcement learning
A Learning Algorithm for Continually Running Fully Recurrent Neural Networks
, 1989
"... The exact form of a gradientfollowing learning algorithm for completely recurrent networks running in continually sampled time is derived and used as the basis for practical algorithms for temporal supervised learning tasks. These algorithms have: (1) the advantage that they do not require a precis ..."
Abstract

Cited by 529 (4 self)
 Add to MetaCart
the retention of information over time periods having either fixed or indefinite length. 1 Introduction A major problem in connectionist theory is to develop learning algorithms that can tap the full computational power of neural networks. Much progress has been made with feedforward networks, and attention
Blind Signal Separation: Statistical Principles
, 2003
"... Blind signal separation (BSS) and independent component analysis (ICA) are emerging techniques of array processing and data analysis, aiming at recovering unobserved signals or `sources' from observed mixtures (typically, the output of an array of sensors), exploiting only the assumption of mut ..."
Abstract

Cited by 522 (4 self)
 Add to MetaCart
Blind signal separation (BSS) and independent component analysis (ICA) are emerging techniques of array processing and data analysis, aiming at recovering unobserved signals or `sources' from observed mixtures (typically, the output of an array of sensors), exploiting only the assumption
A practical guide to support vector classification
, 2010
"... The support vector machine (SVM) is a popular classification technique. However, beginners who are not familiar with SVM often get unsatisfactory results since they miss some easy but significant steps. In this guide, we propose a simple procedure which usually gives reasonable results. ..."
Abstract

Cited by 787 (7 self)
 Add to MetaCart
The support vector machine (SVM) is a popular classification technique. However, beginners who are not familiar with SVM often get unsatisfactory results since they miss some easy but significant steps. In this guide, we propose a simple procedure which usually gives reasonable results.
Nonlinear component analysis as a kernel eigenvalue problem

, 1996
"... We describe a new method for performing a nonlinear form of Principal Component Analysis. By the use of integral operator kernel functions, we can efficiently compute principal components in highdimensional feature spaces, related to input space by some nonlinear map; for instance the space of all ..."
Abstract

Cited by 1554 (85 self)
 Add to MetaCart
We describe a new method for performing a nonlinear form of Principal Component Analysis. By the use of integral operator kernel functions, we can efficiently compute principal components in highdimensional feature spaces, related to input space by some nonlinear map; for instance the space of all
Solving multiclass learning problems via errorcorrecting output codes
 JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH
, 1995
"... Multiclass learning problems involve nding a de nition for an unknown function f(x) whose range is a discrete set containing k>2values (i.e., k \classes"). The de nition is acquired by studying collections of training examples of the form hx i;f(x i)i. Existing approaches to multiclass l ..."
Abstract

Cited by 730 (8 self)
 Add to MetaCart
Multiclass learning problems involve nding a de nition for an unknown function f(x) whose range is a discrete set containing k>2values (i.e., k \classes"). The de nition is acquired by studying collections of training examples of the form hx i;f(x i)i. Existing approaches to multiclass
Large Margin Classification Using the Perceptron Algorithm
 Machine Learning
, 1998
"... We introduce and analyze a new algorithm for linear classification which combines Rosenblatt 's perceptron algorithm with Helmbold and Warmuth's leaveoneout method. Like Vapnik 's maximalmargin classifier, our algorithm takes advantage of data that are linearly separable with large ..."
Abstract

Cited by 518 (2 self)
 Add to MetaCart
We introduce and analyze a new algorithm for linear classification which combines Rosenblatt 's perceptron algorithm with Helmbold and Warmuth's leaveoneout method. Like Vapnik 's maximalmargin classifier, our algorithm takes advantage of data that are linearly separable
Results 1  10
of
246,719