Results 1  10
of
612
Solving Large Nonsymmetric Sparse Linear Systems Using MCSPARSE
 PARALLEL COMPUTING
, 1996
"... ..."
LSQR: An Algorithm for Sparse Linear Equations and Sparse Least Squares
 ACM Trans. Math. Software
, 1982
"... An iterative method is given for solving Ax ~ffi b and minU Ax b 112, where the matrix A is large and sparse. The method is based on the bidiagonalization procedure of Golub and Kahan. It is analytically equivalent to the standard method of conjugate gradients, but possesses more favorable numerica ..."
Abstract

Cited by 653 (21 self)
 Add to MetaCart
An iterative method is given for solving Ax ~ffi b and minU Ax b 112, where the matrix A is large and sparse. The method is based on the bidiagonalization procedure of Golub and Kahan. It is analytically equivalent to the standard method of conjugate gradients, but possesses more favorable
Parallel Numerical Linear Algebra
, 1993
"... We survey general techniques and open problems in numerical linear algebra on parallel architectures. We first discuss basic principles of parallel processing, describing the costs of basic operations on parallel machines, including general principles for constructing efficient algorithms. We illust ..."
Abstract

Cited by 773 (23 self)
 Add to MetaCart
illustrate these principles using current architectures and software systems, and by showing how one would implement matrix multiplication. Then, we present direct and iterative algorithms for solving linear systems of equations, linear least squares problems, the symmetric eigenvalue problem
For Most Large Underdetermined Systems of Linear Equations the Minimal ℓ1norm Solution is also the Sparsest Solution
 Comm. Pure Appl. Math
, 2004
"... We consider linear equations y = Φα where y is a given vector in R n, Φ is a given n by m matrix with n < m ≤ An, and we wish to solve for α ∈ R m. We suppose that the columns of Φ are normalized to unit ℓ 2 norm 1 and we place uniform measure on such Φ. We prove the existence of ρ = ρ(A) so that ..."
Abstract

Cited by 568 (10 self)
 Add to MetaCart
. In contrast, heuristic attempts to sparsely solve such systems – greedy algorithms and thresholding – perform poorly in this challenging setting. The techniques include the use of random proportional embeddings and almostspherical sections in Banach space theory, and deviation bounds for the eigenvalues
Large steps in cloth simulation
 SIGGRAPH 98 Conference Proceedings
, 1998
"... The bottleneck in most cloth simulation systems is that time steps must be small to avoid numerical instability. This paper describes a cloth simulation system that can stably take large time steps. The simulation system couples a new technique for enforcing constraints on individual cloth particle ..."
Abstract

Cited by 576 (5 self)
 Add to MetaCart
as well. The implicit integration method generates a large, unbanded sparse linear system at each time step which is solved using a modified conjugate gradient method that simultaneously enforces particles ’ constraints. The constraints are always maintained exactly, independent of the number of conjugate
Variable iterative methods for nonsymmetric systems of linear equations
 SIAM J. Numer. Anal
, 1983
"... Abstract. We consider a class of iterative algorithms for solving systems of linear equations where the coefficient matrix is nonsymmetric with positivedefinite symmetric part. The algorithms are modelled after the conjugate gradient method, and are well suited for large sparse systems. They do not ..."
Abstract

Cited by 241 (5 self)
 Add to MetaCart
Abstract. We consider a class of iterative algorithms for solving systems of linear equations where the coefficient matrix is nonsymmetric with positivedefinite symmetric part. The algorithms are modelled after the conjugate gradient method, and are well suited for large sparse systems. They do
Localityconstrained linear coding for image classification
 IN: IEEE CONFERENCE ON COMPUTER VISION AND PATTERN CLASSIFICATOIN
, 2010
"... The traditional SPM approach based on bagoffeatures (BoF) requires nonlinear classifiers to achieve good image classification performance. This paper presents a simple but effective coding scheme called Localityconstrained Linear Coding (LLC) in place of the VQ coding in traditional SPM. LLC util ..."
Abstract

Cited by 443 (20 self)
 Add to MetaCart
, achieving stateoftheart performance on several benchmarks. Compared with the sparse coding strategy [22], the objective function used by LLC has an analytical solution. In addition, the paper proposes a fast approximated LLC method by first performing a Knearestneighbor search and then solving a
A sparse approximate inverse preconditioner for nonsymmetric linear systems
 SIAM J. SCI. COMPUT
, 1998
"... This paper is concerned with a new approach to preconditioning for large, sparse linear systems. A procedure for computing an incomplete factorization of the inverse of a nonsymmetric matrix is developed, and the resulting factorized sparse approximate inverse is used as an explicit preconditioner f ..."
Abstract

Cited by 197 (22 self)
 Add to MetaCart
This paper is concerned with a new approach to preconditioning for large, sparse linear systems. A procedure for computing an incomplete factorization of the inverse of a nonsymmetric matrix is developed, and the resulting factorized sparse approximate inverse is used as an explicit preconditioner
Solving unsymmetric sparse systems of linear equations with PARDISO
 Journal of Future Generation Computer Systems
, 2004
"... Supernode partitioning for unsymmetric matrices together with complete block diagonal supernode pivoting and asynchronous computation can achieve high gigaflop rates for parallel sparse LU factorization on shared memory parallel computers. The progress in weighted graph matching algorithms helps to ..."
Abstract

Cited by 198 (12 self)
 Add to MetaCart
is consistently achieved for large sparse unsymmetric matrices from real world applications. Key words: Computational sciences, numerical linear algebra, direct solver, unsymmetric linear systems
Sparse solution of underdetermined linear equations by stagewise orthogonal matching pursuit
, 2006
"... Finding the sparsest solution to underdetermined systems of linear equations y = Φx is NPhard in general. We show here that for systems with ‘typical’/‘random ’ Φ, a good approximation to the sparsest solution is obtained by applying a fixed number of standard operations from linear algebra. Our pr ..."
Abstract

Cited by 274 (22 self)
 Add to MetaCart
enters per stage in OMP; and StOMP takes a fixed number of stages (e.g. 10), while OMP can take many (e.g. n). StOMP runs much faster than competing proposals for sparse solutions, such as ℓ1 minimization and OMP, and so is attractive for solving largescale problems. We use phase diagrams to compare
Results 1  10
of
612