Results 1  10
of
287,526
Simultaneous Geometric Graph Embeddings
"... We consider the following problem known as simultaneous geometric graph embedding (SGE). Given a set of planar graphs on a shared vertex set, decide whether the vertices can be placed in the plane in such a way that for each graph the straightline drawing is planar. We partially settle an open pr ..."
Abstract

Cited by 23 (7 self)
 Add to MetaCart
We consider the following problem known as simultaneous geometric graph embedding (SGE). Given a set of planar graphs on a shared vertex set, decide whether the vertices can be placed in the plane in such a way that for each graph the straightline drawing is planar. We partially settle an open
The complexity of simultaneous geometric graph embedding
, 2015
"... Given a collection of planar graphs G1,..., Gk on the same set V of n vertices, the simultaneous geometric embedding (with mapping) problem, or simply kSGE, is to find a set P of n points in the plane and a bijection ϕ: V → P such that the induced straightline drawings of G1,..., Gk under ϕ are al ..."
Abstract

Cited by 1 (1 self)
 Add to MetaCart
Given a collection of planar graphs G1,..., Gk on the same set V of n vertices, the simultaneous geometric embedding (with mapping) problem, or simply kSGE, is to find a set P of n points in the plane and a bijection ϕ: V → P such that the induced straightline drawings of G1,..., Gk under ϕ
Community detection in graphs
, 2009
"... The modern science of networks has brought significant advances to our understanding of complex systems. One of the most relevant features of graphs representing real systems is community structure, or clustering, i. e. the organization of vertices in clusters, with many edges joining vertices of th ..."
Abstract

Cited by 801 (1 self)
 Add to MetaCart
The modern science of networks has brought significant advances to our understanding of complex systems. One of the most relevant features of graphs representing real systems is community structure, or clustering, i. e. the organization of vertices in clusters, with many edges joining vertices
Laplacian Eigenmaps and Spectral Techniques for Embedding and Clustering
 Advances in Neural Information Processing Systems 14
, 2001
"... Drawing on the correspondence between the graph Laplacian, the LaplaceBeltrami operator on a manifold, and the connections to the heat equation, we propose a geometrically motivated algorithm for constructing a representation for data sampled from a low dimensional manifold embedded in a higher ..."
Abstract

Cited by 664 (8 self)
 Add to MetaCart
Drawing on the correspondence between the graph Laplacian, the LaplaceBeltrami operator on a manifold, and the connections to the heat equation, we propose a geometrically motivated algorithm for constructing a representation for data sampled from a low dimensional manifold embedded in a
The geometry of graphs and some of its algorithmic applications
 Combinatorica
, 1995
"... In this paper we explore some implications of viewing graphs as geometric objects. This approach offers a new perspective on a number of graphtheoretic and algorithmic problems. There are several ways to model graphs geometrically and our main concern here is with geometric representations that r ..."
Abstract

Cited by 543 (20 self)
 Add to MetaCart
their geometric images. In this paper we develop efficient algorithms for embedding graphs lowdimensionally with a small distortion. Further algorithmic applications include: 0 A simple, unified approach to a number of problems on multicommodity flows, including the LeightonRae Theorem [29] and some of its
A Framework for Dynamic Graph Drawing
 CONGRESSUS NUMERANTIUM
, 1992
"... Drawing graphs is an important problem that combines flavors of computational geometry and graph theory. Applications can be found in a variety of areas including circuit layout, network management, software engineering, and graphics. The main contributions of this paper can be summarized as follows ..."
Abstract

Cited by 627 (44 self)
 Add to MetaCart
Drawing graphs is an important problem that combines flavors of computational geometry and graph theory. Applications can be found in a variety of areas including circuit layout, network management, software engineering, and graphics. The main contributions of this paper can be summarized
Primitives for the manipulation of general subdivisions and the computations of Voronoi diagrams
 ACM Tmns. Graph
, 1985
"... The following problem is discussed: Given n points in the plane (the sites) and an arbitrary query point 4, find the site that is closest to q. This problem can be solved by constructing the Voronoi diagram of the given sites and then locating the query point in one of its regions. Two algorithms ar ..."
Abstract

Cited by 543 (11 self)
 Add to MetaCart
of graphs in twodimensional manifolds. This structure represents simultaneously an embedding, its dual, and its mirror image. Furthermore, just two operators are sufficient for building and modifying arbitrary diagrams.
Quantization Index Modulation: A Class of Provably Good Methods for Digital Watermarking and Information Embedding
 IEEE TRANS. ON INFORMATION THEORY
, 1999
"... We consider the problem of embedding one signal (e.g., a digital watermark), within another "host" signal to form a third, "composite" signal. The embedding is designed to achieve efficient tradeoffs among the three conflicting goals of maximizing informationembedding rate, mini ..."
Abstract

Cited by 495 (15 self)
 Add to MetaCart
We consider the problem of embedding one signal (e.g., a digital watermark), within another "host" signal to form a third, "composite" signal. The embedding is designed to achieve efficient tradeoffs among the three conflicting goals of maximizing informationembedding rate
Learning the Kernel Matrix with SemiDefinite Programming
, 2002
"... Kernelbased learning algorithms work by embedding the data into a Euclidean space, and then searching for linear relations among the embedded data points. The embedding is performed implicitly, by specifying the inner products between each pair of points in the embedding space. This information ..."
Abstract

Cited by 780 (22 self)
 Add to MetaCart
Kernelbased learning algorithms work by embedding the data into a Euclidean space, and then searching for linear relations among the embedded data points. The embedding is performed implicitly, by specifying the inner products between each pair of points in the embedding space. This information
Results 1  10
of
287,526