Results 1  10
of
498
Simulating the Effect of Decoherence and Inaccuracies on a Quantum Computer
, 1998
"... Abstract. A Quantum Computer is a new type of computer which can solve problems such as factoring and database search very efficiently. The usefulness of a quantum computer is limited by the effect of two different types of errors, decoherence and inaccuracies. In this paper we show the results of s ..."
Abstract
 Add to MetaCart
Abstract. A Quantum Computer is a new type of computer which can solve problems such as factoring and database search very efficiently. The usefulness of a quantum computer is limited by the effect of two different types of errors, decoherence and inaccuracies. In this paper we show the results
Simulating Physics with Computers
 SIAM Journal on Computing
, 1982
"... A digital computer is generally believed to be an efficient universal computing device; that is, it is believed able to simulate any physical computing device with an increase in computation time of at most a polynomial factor. This may not be true when quantum mechanics is taken into consideration. ..."
Abstract

Cited by 601 (1 self)
 Add to MetaCart
A digital computer is generally believed to be an efficient universal computing device; that is, it is believed able to simulate any physical computing device with an increase in computation time of at most a polynomial factor. This may not be true when quantum mechanics is taken into consideration
Good quantum error correcting codes exist
 REV. A
, 1996
"... A quantum errorcorrecting code is defined to be a unitary mapping (encoding) of k qubits (2state quantum systems) into a subspace of the quantum state space of n qubits such that if any t of the qubits undergo arbitrary decoherence, not necessarily independently, the resulting n qubits can be used ..."
Abstract

Cited by 349 (9 self)
 Add to MetaCart
A quantum errorcorrecting code is defined to be a unitary mapping (encoding) of k qubits (2state quantum systems) into a subspace of the quantum state space of n qubits such that if any t of the qubits undergo arbitrary decoherence, not necessarily independently, the resulting n qubits can
Faulttolerant quantum computation
 In Proc. 37th FOCS
, 1996
"... It has recently been realized that use of the properties of quantum mechanics might speed up certain computations dramatically. Interest in quantum computation has since been growing. One of the main difficulties in realizing quantum computation is that decoherence tends to destroy the information i ..."
Abstract

Cited by 266 (5 self)
 Add to MetaCart
as originally believed. For any quantum computation with t gates, we show how to build a polynomial size quantum circuit that tolerates O(1 / log c t) amounts of inaccuracy and decoherence per gate, for some constant c; the previous bound was O(1 /t). We do this by showing that operations can be performed
Quantum Computers, Factoring and Decoherence
, 1995
"... It has been demonstrated recently that quantum computers can dramatically speed up the task of finding factors of large numbers  a problem of great practical significance because of its cryptographic applications. Factors of an Ldigit number can be found in L 2 time (compared to exp L 1=3 ..."
Abstract
 Add to MetaCart
=3 time) by utilizing the ability of a quantum computer to simultaneously follow all of the paths corresponding to distinct classical inputs, and to obtain the solution as a result of coherent quantum interference between the alternatives. Here it is shown how the decoherence process degrades
Efficient simulation of quantum systems by quantum computers
, 1998
"... We show that the time evolution of the wave function of a quantummechanical manyparticle system can be simulated precisely and efficiently on a quantum computer. The time needed for such a simulation is comparable to the time of a conventional simulation of the corresponding classical system, a per ..."
Abstract

Cited by 79 (0 self)
 Add to MetaCart
We show that the time evolution of the wave function of a quantummechanical manyparticle system can be simulated precisely and efficiently on a quantum computer. The time needed for such a simulation is comparable to the time of a conventional simulation of the corresponding classical system, a
Quantum circuits with mixed states
 in Proc. 30th STOC
, 1998
"... Current formal models for quantum computation deal only with unitary gates operating on “pure quantum states”. In these models it is difficult or impossible to deal formally with several central issues: measurements in the middle of the computation; decoherence and noise, using probabilistic subrout ..."
Abstract

Cited by 147 (10 self)
 Add to MetaCart
Current formal models for quantum computation deal only with unitary gates operating on “pure quantum states”. In these models it is difficult or impossible to deal formally with several central issues: measurements in the middle of the computation; decoherence and noise, using probabilistic
Results 1  10
of
498