Results 1  10
of
423,515
ShortSighted Stochastic Shortest Path Problems
"... Algorithms to solve probabilistic planning problems can be classified in probabilistic planners and replanners. Probabilistic planners invest significant computational effort to generate a closed policy, i.e., a mapping function from every state to an action, and these solutions never “fail ” if the ..."
Abstract

Cited by 5 (3 self)
 Add to MetaCart
. In this paper, we introduce a special case of Stochastic Shortest Path Problems (SSPs), the shortsighted SSPs, in which every state has positive probability of being reached using at most t actions. We introduce the novel algorithm ShortSighted Probabilistic Planner (SSiPP) that solves SSPs through shortsighted
Depthbased Shortsighted Stochastic Shortest Path Problems
"... Stochastic Shortest Path Problems (SSPs) are a common representation for probabilistic planning problems. Two approaches can be used to solve SSPs: (i) consider all probabilistically reachable states and (ii) plan only for a subset of these reachable states. Closed policies, the solutions obtained ..."
Abstract
 Add to MetaCart
Stochastic Shortest Path Problems (SSPs) are a common representation for probabilistic planning problems. Two approaches can be used to solve SSPs: (i) consider all probabilistically reachable states and (ii) plan only for a subset of these reachable states. Closed policies, the solutions obtained
TrajectoryBased ShortSighted Probabilistic Planning
"... Probabilistic planning captures the uncertainty of plan execution by probabilistically modeling the effects of actions in the environment, and therefore the probability of reaching different states from a given state and action. In order to compute a solution for a probabilistic planning problem, pl ..."
Abstract

Cited by 1 (1 self)
 Add to MetaCart
Stochastic Shortest Path Problems (SSPs), a novel approach to manage uncertainty for probabilistic planning problems in which states reachable with low probability are substituted by artificial goals that heuristically estimate their cost to reach a goal state. We also extend the theoretical results of ShortSighted
Finding the k Shortest Paths
, 1997
"... We give algorithms for finding the k shortest paths (not required to be simple) connecting a pair of vertices in a digraph. Our algorithms output an implicit representation of these paths in a digraph with n vertices and m edges, in time O(m + n log n + k). We can also find the k shortest pat ..."
Abstract

Cited by 401 (2 self)
 Add to MetaCart
We give algorithms for finding the k shortest paths (not required to be simple) connecting a pair of vertices in a digraph. Our algorithms output an implicit representation of these paths in a digraph with n vertices and m edges, in time O(m + n log n + k). We can also find the k shortest
The Valuation of Options for Alternative Stochastic Processes
 Journal of Financial Economics
, 1976
"... This paper examines the structure of option valuation problems and develops a new technique for their solution. It also introduces several jump and diffusion processes which have nol been used in previous models. The technique is applied lo these processes to find explicit option valuation formulas, ..."
Abstract

Cited by 661 (4 self)
 Add to MetaCart
This paper examines the structure of option valuation problems and develops a new technique for their solution. It also introduces several jump and diffusion processes which have nol been used in previous models. The technique is applied lo these processes to find explicit option valuation formulas
Theoretical improvements in algorithmic efficiency for network flow problems

, 1972
"... This paper presents new algorithms for the maximum flow problem, the Hitchcock transportation problem, and the general minimumcost flow problem. Upper bounds on ... the numbers of steps in these algorithms are derived, and are shown to compale favorably with upper bounds on the numbers of steps req ..."
Abstract

Cited by 565 (0 self)
 Add to MetaCart
problem, in which all shortestpath computations are performed on networks with all weights nonnegative. In particular, this
A new approach to the maximum flow problem
 JOURNAL OF THE ACM
, 1988
"... All previously known efficient maximumflow algorithms work by finding augmenting paths, either one path at a time (as in the original Ford and Fulkerson algorithm) or all shortestlength augmenting paths at once (using the layered network approach of Dinic). An alternative method based on the pre ..."
Abstract

Cited by 672 (34 self)
 Add to MetaCart
All previously known efficient maximumflow algorithms work by finding augmenting paths, either one path at a time (as in the original Ford and Fulkerson algorithm) or all shortestlength augmenting paths at once (using the layered network approach of Dinic). An alternative method based
A HighThroughput Path Metric for MultiHop Wireless Routing
, 2003
"... This paper presents the expected transmission count metric (ETX), which finds highthroughput paths on multihop wireless networks. ETX minimizes the expected total number of packet transmissions (including retransmissions) required to successfully deliver a packet to the ultimate destination. The E ..."
Abstract

Cited by 1078 (5 self)
 Add to MetaCart
This paper presents the expected transmission count metric (ETX), which finds highthroughput paths on multihop wireless networks. ETX minimizes the expected total number of packet transmissions (including retransmissions) required to successfully deliver a packet to the ultimate destination
Probabilistic Roadmaps for Path Planning in HighDimensional Configuration Spaces
 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION
, 1996
"... A new motion planning method for robots in static workspaces is presented. This method proceeds in two phases: a learning phase and a query phase. In the learning phase, a probabilistic roadmap is constructed and stored as a graph whose nodes correspond to collisionfree configurations and whose edg ..."
Abstract

Cited by 1276 (124 self)
 Add to MetaCart
edges correspond to feasible paths between these configurations. These paths are computed using a simple and fast local planner. In the query phase, any given start and goal configurations of the robot are connected to two nodes of the roadmap; the roadmap is then searched for a path joining these two
Results 1  10
of
423,515