Results 1  10
of
251,904
Semidefinite Representations for Finite Varieties
 MATHEMATICAL PROGRAMMING
, 2002
"... We consider the problem of minimizing a polynomial over a semialgebraic set defined by polynomial equalities and inequalities. When the polynomial equalities have a finite number of complex solutions and define a radical ideal we can reformulate this problem as a semidefinite programming prob ..."
Abstract

Cited by 52 (7 self)
 Add to MetaCart
We consider the problem of minimizing a polynomial over a semialgebraic set defined by polynomial equalities and inequalities. When the polynomial equalities have a finite number of complex solutions and define a radical ideal we can reformulate this problem as a semidefinite programming
Learning the Kernel Matrix with SemiDefinite Programming
, 2002
"... Kernelbased learning algorithms work by embedding the data into a Euclidean space, and then searching for linear relations among the embedded data points. The embedding is performed implicitly, by specifying the inner products between each pair of points in the embedding space. This information ..."
Abstract

Cited by 780 (22 self)
 Add to MetaCart
problems in machine learning. In this paper we show how the kernel matrix can be learned from data via semidefinite programming (SDP) techniques. When applied
Interior Point Methods in Semidefinite Programming with Applications to Combinatorial Optimization
 SIAM Journal on Optimization
, 1993
"... We study the semidefinite programming problem (SDP), i.e the problem of optimization of a linear function of a symmetric matrix subject to linear equality constraints and the additional condition that the matrix be positive semidefinite. First we review the classical cone duality as specialized to S ..."
Abstract

Cited by 557 (12 self)
 Add to MetaCart
We study the semidefinite programming problem (SDP), i.e the problem of optimization of a linear function of a symmetric matrix subject to linear equality constraints and the additional condition that the matrix be positive semidefinite. First we review the classical cone duality as specialized
Improved Approximation Algorithms for Maximum Cut and Satisfiability Problems Using Semidefinite Programming
 Journal of the ACM
, 1995
"... We present randomized approximation algorithms for the maximum cut (MAX CUT) and maximum 2satisfiability (MAX 2SAT) problems that always deliver solutions of expected value at least .87856 times the optimal value. These algorithms use a simple and elegant technique that randomly rounds the solution ..."
Abstract

Cited by 1231 (13 self)
 Add to MetaCart
the solution to a nonlinear programming relaxation. This relaxation can be interpreted both as a semidefinite program and as an eigenvalue minimization problem. The best previously known approximation algorithms for these problems had performance guarantees of ...
The homogeneous coordinate ring of a toric variety
, 1992
"... This paper will introduce the homogeneous coordinate ring S of a toric variety X. The ring S is a polynomial ring with one variable for each onedimensional cone in the fan ∆ determining X, and S has a natural grading determined by the monoid of effective divisor classes in the Chow group An−1(X) of ..."
Abstract

Cited by 478 (7 self)
 Add to MetaCart
This paper will introduce the homogeneous coordinate ring S of a toric variety X. The ring S is a polynomial ring with one variable for each onedimensional cone in the fan ∆ determining X, and S has a natural grading determined by the monoid of effective divisor classes in the Chow group An−1(X
Bandera: Extracting Finitestate Models from Java Source Code
 IN PROCEEDINGS OF THE 22ND INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING
, 2000
"... Finitestate verification techniques, such as model checking, have shown promise as a costeffective means for finding defects in hardware designs. To date, the application of these techniques to software has been hindered by several obstacles. Chief among these is the problem of constructing a fini ..."
Abstract

Cited by 653 (35 self)
 Add to MetaCart
Finitestate verification techniques, such as model checking, have shown promise as a costeffective means for finding defects in hardware designs. To date, the application of these techniques to software has been hindered by several obstacles. Chief among these is the problem of constructing a
A solution to Plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge
 PSYCHOLOGICAL REVIEW
, 1997
"... How do people know as much as they do with as little information as they get? The problem takes many forms; learning vocabulary from text is an especially dramatic and convenient case for research. A new general theory of acquired similarity and knowledge representation, latent semantic analysis (LS ..."
Abstract

Cited by 1772 (10 self)
 Add to MetaCart
How do people know as much as they do with as little information as they get? The problem takes many forms; learning vocabulary from text is an especially dramatic and convenient case for research. A new general theory of acquired similarity and knowledge representation, latent semantic analysis
Dual polyhedra and mirror symmetry for Calabi–Yau hypersurfaces in toric varieties
 J. Alg. Geom
, 1994
"... We consider families F(∆) consisting of complex (n − 1)dimensional projective algebraic compactifications of ∆regular affine hypersurfaces Zf defined by Laurent polynomials f with a fixed ndimensional Newton polyhedron ∆ in ndimensional algebraic torus T = (C ∗ ) n. If the family F(∆) defined by ..."
Abstract

Cited by 467 (20 self)
 Add to MetaCart
by a Newton polyhedron ∆ consists of (n − 1)dimensional CalabiYau varieties then the dual, or polar, polyhedron ∆ ∗ in the dual space defines another family F( ∆ ∗ ) of CalabiYau varieties, so that we obtain the remarkable duality between two different families of CalabiYau varieties. It is shown
Structured Semidefinite Programs and Semialgebraic Geometry Methods in Robustness and Optimization
, 2000
"... ..."
Global Optimization with Polynomials and the Problem of Moments
 SIAM Journal on Optimization
, 2001
"... We consider the problem of finding the unconstrained global minimum of a realvalued polynomial p(x) : R R, as well as the global minimum of p(x), in a compact set K defined by polynomial inequalities. It is shown that this problem reduces to solving an (often finite) sequence of convex linear mat ..."
Abstract

Cited by 569 (47 self)
 Add to MetaCart
We consider the problem of finding the unconstrained global minimum of a realvalued polynomial p(x) : R R, as well as the global minimum of p(x), in a compact set K defined by polynomial inequalities. It is shown that this problem reduces to solving an (often finite) sequence of convex linear
Results 1  10
of
251,904