Results 1  10
of
597,818
Selfadjusting binary search trees
, 1985
"... The splay tree, a selfadjusting form of binary search tree, is developed and analyzed. The binary search tree is a data structure for representing tables and lists so that accessing, inserting, and deleting items is easy. On an nnode splay tree, all the standard search tree operations have an am ..."
Abstract

Cited by 435 (19 self)
 Add to MetaCart
The splay tree, a selfadjusting form of binary search tree, is developed and analyzed. The binary search tree is a data structure for representing tables and lists so that accessing, inserting, and deleting items is easy. On an nnode splay tree, all the standard search tree operations have
Constrained model predictive control: Stability and optimality
 AUTOMATICA
, 2000
"... Model predictive control is a form of control in which the current control action is obtained by solving, at each sampling instant, a finite horizon openloop optimal control problem, using the current state of the plant as the initial state; the optimization yields an optimal control sequence and t ..."
Abstract

Cited by 696 (15 self)
 Add to MetaCart
Model predictive control is a form of control in which the current control action is obtained by solving, at each sampling instant, a finite horizon openloop optimal control problem, using the current state of the plant as the initial state; the optimization yields an optimal control sequence
SNOPT: An SQP Algorithm For LargeScale Constrained Optimization
, 2002
"... Sequential quadratic programming (SQP) methods have proved highly effective for solving constrained optimization problems with smooth nonlinear functions in the objective and constraints. Here we consider problems with general inequality constraints (linear and nonlinear). We assume that first deriv ..."
Abstract

Cited by 582 (23 self)
 Add to MetaCart
Sequential quadratic programming (SQP) methods have proved highly effective for solving constrained optimization problems with smooth nonlinear functions in the objective and constraints. Here we consider problems with general inequality constraints (linear and nonlinear). We assume that first
Optimization Flow Control, I: Basic Algorithm and Convergence
 IEEE/ACM TRANSACTIONS ON NETWORKING
, 1999
"... We propose an optimization approach to flow control where the objective is to maximize the aggregate source utility over their transmission rates. We view network links and sources as processors of a distributed computation system to solve the dual problem using gradient projection algorithm. In thi ..."
Abstract

Cited by 690 (64 self)
 Add to MetaCart
We propose an optimization approach to flow control where the objective is to maximize the aggregate source utility over their transmission rates. We view network links and sources as processors of a distributed computation system to solve the dual problem using gradient projection algorithm
Adolescencelimited and lifecoursepersistent antisocial behavior: Adevelopmental taxonomy
 Psychological Review
, 1993
"... A dual taxonomy is presented to reconcile 2 incongruous facts about antisocial behavior: (a) It shows impressive continuity over age, but (b) its prevalence changes dramatically over age, increasing almost 10fold temporarily during adolescence. This article suggests that delinquency conceals 2 dist ..."
Abstract

Cited by 549 (4 self)
 Add to MetaCart
, children's neuropsychological problems interact cumulatively with their criminogenic environments across development, culminating in a pathological personality. According to the theory of adolescencelimited antisocial behavior, a contemporary maturity gap encourages teens to mimic antisocial behavior
A training algorithm for optimal margin classifiers
 PROCEEDINGS OF THE 5TH ANNUAL ACM WORKSHOP ON COMPUTATIONAL LEARNING THEORY
, 1992
"... A training algorithm that maximizes the margin between the training patterns and the decision boundary is presented. The technique is applicable to a wide variety of classifiaction functions, including Perceptrons, polynomials, and Radial Basis Functions. The effective number of parameters is adjust ..."
Abstract

Cited by 1848 (44 self)
 Add to MetaCart
A training algorithm that maximizes the margin between the training patterns and the decision boundary is presented. The technique is applicable to a wide variety of classifiaction functions, including Perceptrons, polynomials, and Radial Basis Functions. The effective number of parameters
Separation of ownership and control
 JOURNAL OF LAW AND ECONOMICS
, 1983
"... This paper analyzes the survival of organizations in which decision agents do not bear a major share of the wealth effects of their decisions. This is what the literature on large corporations calls separation of âownershipâ and âcontrol.â Such separation of decision and risk bearing functio ..."
Abstract

Cited by 1564 (7 self)
 Add to MetaCart
This paper analyzes the survival of organizations in which decision agents do not bear a major share of the wealth effects of their decisions. This is what the literature on large corporations calls separation of âownershipâ and âcontrol.â Such separation of decision and risk bearing
Genetic Algorithms for Multiobjective Optimization: Formulation, Discussion and Generalization
, 1993
"... The paper describes a rankbased fitness assignment method for Multiple Objective Genetic Algorithms (MOGAs). Conventional niche formation methods are extended to this class of multimodal problems and theory for setting the niche size is presented. The fitness assignment method is then modified to a ..."
Abstract

Cited by 610 (15 self)
 Add to MetaCart
to allow direct intervention of an external decision maker (DM). Finally, the MOGA is generalised further: the genetic algorithm is seen as the optimizing element of a multiobjective optimization loop, which also comprises the DM. It is the interaction between the two that leads to the determination of a
Taming the Underlying Challenges of Reliable Multihop Routing in Sensor Networks
 In SenSys
, 2003
"... The dynamic and lossy nature of wireless communication poses major challenges to reliable, selforganizing multihop networks. These nonideal characteristics are more problematic with the primitive, lowpower radio transceivers found in sensor networks, and raise new issues that routing protocols mu ..."
Abstract

Cited by 775 (21 self)
 Add to MetaCart
The dynamic and lossy nature of wireless communication poses major challenges to reliable, selforganizing multihop networks. These nonideal characteristics are more problematic with the primitive, lowpower radio transceivers found in sensor networks, and raise new issues that routing protocols
Results 1  10
of
597,818