Results 1  10
of
2,389,176
MatÃ©: A Tiny Virtual Machine for Sensor Networks
, 2002
"... Composed of tens of thousands of tiny devices with very limited resources ("motes"), sensor networks are subject to novel systems problems and constraints. The large number of motes in a sensor network means that there will often be some failing nodes; networks must be easy to repopulate. ..."
Abstract

Cited by 502 (21 self)
 Add to MetaCart
late. Often there is no feasible method to recharge motes, so energy is a precious resource. Once deployed, a network must be reprogrammable although physically unreachable, and this reprogramming can be a significant energy cost. We present MatÃ©, a tiny communicationcentric virtual machine designed
Estimating Continuous Distributions in Bayesian Classifiers
 In Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence
, 1995
"... When modeling a probability distribution with a Bayesian network, we are faced with the problem of how to handle continuous variables. Most previous work has either solved the problem by discretizing, or assumed that the data are generated by a single Gaussian. In this paper we abandon the normality ..."
Abstract

Cited by 489 (2 self)
 Add to MetaCart
When modeling a probability distribution with a Bayesian network, we are faced with the problem of how to handle continuous variables. Most previous work has either solved the problem by discretizing, or assumed that the data are generated by a single Gaussian. In this paper we abandon
Verb Semantics And Lexical Selection
, 1994
"... ... structure. As Levin has addressed (Levin 1985), the decomposition of verbs is proposed for the purposes of accounting for systematic semanticsyntactic correspondences. This results in a series of problems for MT systems: inflexible verb sense definitions; difficulty in handling metaphor and new ..."
Abstract

Cited by 520 (4 self)
 Add to MetaCart
and new usages; imprecise lexical selection and insufficient system coverage. It seems one approach is to apply probability methods and statistical models for some of these problems. However, the question reminds: has PSR exhausted the potential of the knowledgebased approach? If not, are there any
Wrappers for Feature Subset Selection
 AIJ SPECIAL ISSUE ON RELEVANCE
, 1997
"... In the feature subset selection problem, a learning algorithm is faced with the problem of selecting a relevant subset of features upon which to focus its attention, while ignoring the rest. To achieve the best possible performance with a particular learning algorithm on a particular training set, a ..."
Abstract

Cited by 1522 (3 self)
 Add to MetaCart
In the feature subset selection problem, a learning algorithm is faced with the problem of selecting a relevant subset of features upon which to focus its attention, while ignoring the rest. To achieve the best possible performance with a particular learning algorithm on a particular training set
Regression Shrinkage and Selection Via the Lasso
 Journal of the Royal Statistical Society, Series B
, 1994
"... We propose a new method for estimation in linear models. The "lasso" minimizes the residual sum of squares subject to the sum of the absolute value of the coefficients being less than a constant. Because of the nature of this constraint it tends to produce some coefficients that are exactl ..."
Abstract

Cited by 4055 (51 self)
 Add to MetaCart
We propose a new method for estimation in linear models. The "lasso" minimizes the residual sum of squares subject to the sum of the absolute value of the coefficients being less than a constant. Because of the nature of this constraint it tends to produce some coefficients
NiagaraCQ: A Scalable Continuous Query System for Internet Databases
 In SIGMOD
, 2000
"... Continuous queries are persistent queries that allow users to receive new results when they become available. While continuous query systems can transform a passive web into an active environment, they need to be able to support millions of queries due to the scale of the Internet. No existing syste ..."
Abstract

Cited by 583 (9 self)
 Add to MetaCart
Continuous queries are persistent queries that allow users to receive new results when they become available. While continuous query systems can transform a passive web into an active environment, they need to be able to support millions of queries due to the scale of the Internet. No existing
A maximum likelihood approach to continuous speech recognition
 IEEE Trans. Pattern Anal. Machine Intell
, 1983
"... AbstractSpeech recognition is formulated as a problem of maximum likelihood decoding. This formulation requires statistical models of the speech production process. In this paper, we describe a number of statistical models for use in speech recognition. We give special attention to determining the ..."
Abstract

Cited by 472 (9 self)
 Add to MetaCart
AbstractSpeech recognition is formulated as a problem of maximum likelihood decoding. This formulation requires statistical models of the speech production process. In this paper, we describe a number of statistical models for use in speech recognition. We give special attention to determining
An introduction to variable and feature selection
 Journal of Machine Learning Research
, 2003
"... Variable and feature selection have become the focus of much research in areas of application for which datasets with tens or hundreds of thousands of variables are available. ..."
Abstract

Cited by 1283 (16 self)
 Add to MetaCart
Variable and feature selection have become the focus of much research in areas of application for which datasets with tens or hundreds of thousands of variables are available.
Active Learning with Statistical Models
, 1995
"... For manytypes of learners one can compute the statistically "optimal" way to select data. We review how these techniques have been used with feedforward neural networks [MacKay, 1992# Cohn, 1994]. We then showhow the same principles may be used to select data for two alternative, statist ..."
Abstract

Cited by 677 (12 self)
 Add to MetaCart
For manytypes of learners one can compute the statistically "optimal" way to select data. We review how these techniques have been used with feedforward neural networks [MacKay, 1992# Cohn, 1994]. We then showhow the same principles may be used to select data for two alternative
Results 1  10
of
2,389,176