Results 1  10
of
431,554
The Advantages of Evolutionary Computation
, 1997
"... Evolutionary computation is becoming common in the solution of difficult, realworld problems in industry, medicine, and defense. This paper reviews some of the practical advantages to using evolutionary algorithms as compared with classic methods of optimization or artificial intelligence. Specific ..."
Abstract

Cited by 536 (6 self)
 Add to MetaCart
Evolutionary computation is becoming common in the solution of difficult, realworld problems in industry, medicine, and defense. This paper reviews some of the practical advantages to using evolutionary algorithms as compared with classic methods of optimization or artificial intelligence. Specific
Planning Algorithms
, 2004
"... This book presents a unified treatment of many different kinds of planning algorithms. The subject lies at the crossroads between robotics, control theory, artificial intelligence, algorithms, and computer graphics. The particular subjects covered include motion planning, discrete planning, planning ..."
Abstract

Cited by 1108 (51 self)
 Add to MetaCart
This book presents a unified treatment of many different kinds of planning algorithms. The subject lies at the crossroads between robotics, control theory, artificial intelligence, algorithms, and computer graphics. The particular subjects covered include motion planning, discrete planning
Scheduling Algorithms for Multiprogramming in a HardRealTime Environment
, 1973
"... The problem of multiprogram scheduling on a single processor is studied from the viewpoint... ..."
Abstract

Cited by 3712 (2 self)
 Add to MetaCart
The problem of multiprogram scheduling on a single processor is studied from the viewpoint...
Static Scheduling of Synchronous Data Flow Programs for Digital Signal Processing
 IEEE TRANSACTIONS ON COMPUTERS
, 1987
"... Large grain data flow (LGDF) programming is natural and convenient for describing digital signal processing (DSP) systems, but its runtime overhead is costly in real time or costsensitive applications. In some situations, designers are not willing to squander computing resources for the sake of pro ..."
Abstract

Cited by 592 (37 self)
 Add to MetaCart
special case of Petri nets. This selfcontained paper develops the theory necessary to statically schedule SDF programs on single or multiple processors. A class of static (compile time) scheduling algorithms is proven valid, and specific algorithms are given for scheduling SDF systems onto single
A learning algorithm for Boltzmann machines
 Cognitive Science
, 1985
"... The computotionol power of massively parallel networks of simple processing elements resides in the communication bandwidth provided by the hardware connections between elements. These connections con allow a significant fraction of the knowledge of the system to be applied to an instance of a probl ..."
Abstract

Cited by 586 (13 self)
 Add to MetaCart
to a general learning rule for modifying the connection strengths so as to incorporate knowledge obout o task domain in on efficient way. We describe some simple examples in which the learning algorithm creates internal representations thot ore demonstrobly the most efficient way of using
Factor Graphs and the SumProduct Algorithm
 IEEE TRANSACTIONS ON INFORMATION THEORY
, 1998
"... A factor graph is a bipartite graph that expresses how a "global" function of many variables factors into a product of "local" functions. Factor graphs subsume many other graphical models including Bayesian networks, Markov random fields, and Tanner graphs. Following one simple c ..."
Abstract

Cited by 1787 (72 self)
 Add to MetaCart
computational rule, the sumproduct algorithm operates in factor graphs to computeeither exactly or approximatelyvarious marginal functions by distributed messagepassing in the graph. A wide variety of algorithms developed in artificial intelligence, signal processing, and digital communications can
A Fast and Elitist MultiObjective Genetic Algorithm: NSGAII
, 2000
"... Multiobjective evolutionary algorithms which use nondominated sorting and sharing have been mainly criticized for their (i) O(MN computational complexity (where M is the number of objectives and N is the population size), (ii) nonelitism approach, and (iii) the need for specifying a sharing param ..."
Abstract

Cited by 1707 (58 self)
 Add to MetaCart
parameter. In this paper, we suggest a nondominated sorting based multiobjective evolutionary algorithm (we called it the Nondominated Sorting GAII or NSGAII) which alleviates all the above three difficulties. Specifically, a fast nondominated sorting approach with O(MN ) computational complexity
A Fast Elitist NonDominated Sorting Genetic Algorithm for MultiObjective Optimization: NSGAII
, 2000
"... Multiobjective evolutionary algorithms which use nondominated sorting and sharing have been mainly criticized for their (i) 4 computational complexity (where is the number of objectives and is the population size), (ii) nonelitism approach, and (iii) the need for specifying a sharing ..."
Abstract

Cited by 634 (15 self)
 Add to MetaCart
sharing parameter. In this paper, we suggest a nondominated sorting based multiobjective evolutionary algorithm (we called it the Nondominated Sorting GAII or NSGAII) which alleviates all the above three difficulties. Specifically, a fast nondominated sorting approach with computational
Algorithms for Scalable Synchronization on SharedMemory Multiprocessors
 ACM Transactions on Computer Systems
, 1991
"... Busywait techniques are heavily used for mutual exclusion and barrier synchronization in sharedmemory parallel programs. Unfortunately, typical implementations of busywaiting tend to produce large amounts of memory and interconnect contention, introducing performance bottlenecks that become marke ..."
Abstract

Cited by 567 (32 self)
 Add to MetaCart
markedly more pronounced as applications scale. We argue that this problem is not fundamental, and that one can in fact construct busywait synchronization algorithms that induce no memory or interconnect contention. The key to these algorithms is for every processor to spin on separate locally
A Simple, Fast, and Accurate Algorithm to Estimate Large Phylogenies by Maximum Likelihood
, 2003
"... The increase in the number of large data sets and the complexity of current probabilistic sequence evolution models necessitates fast and reliable phylogeny reconstruction methods. We describe a new approach, based on the maximumlikelihood principle, which clearly satisfies these requirements. The ..."
Abstract

Cited by 2109 (30 self)
 Add to MetaCart
. The core of this method is a simple hillclimbing algorithm that adjusts tree topology and branch lengths simultaneously. This algorithm starts from an initial tree built by a fast distancebased method and modifies this tree to improve its likelihood at each iteration. Due to this simultaneous adjustment
Results 1  10
of
431,554