Results 1  10
of
2,006,769
Contour Tracking By Stochastic Propagation of Conditional Density
, 1996
"... . In Proc. European Conf. Computer Vision, 1996, pp. 343356, Cambridge, UK The problem of tracking curves in dense visual clutter is a challenging one. Trackers based on Kalman filters are of limited use; because they are based on Gaussian densities which are unimodal, they cannot represent s ..."
Abstract

Cited by 658 (24 self)
 Add to MetaCart
simultaneous alternative hypotheses. Extensions to the Kalman filter to handle multiple data associations work satisfactorily in the simple case of point targets, but do not extend naturally to continuous curves. A new, stochastic algorithm is proposed here, the Condensation algorithm  Conditional
Stochastic Perturbation Theory
, 1988
"... . In this paper classical matrix perturbation theory is approached from a probabilistic point of view. The perturbed quantity is approximated by a firstorder perturbation expansion, in which the perturbation is assumed to be random. This permits the computation of statistics estimating the variatio ..."
Abstract

Cited by 886 (35 self)
 Add to MetaCart
the variation in the perturbed quantity. Up to the higherorder terms that are ignored in the expansion, these statistics tend to be more realistic than perturbation bounds obtained in terms of norms. The technique is applied to a number of problems in matrix perturbation theory, including least squares
The Valuation of Options for Alternative Stochastic Processes
 Journal of Financial Economics
, 1976
"... This paper examines the structure of option valuation problems and develops a new technique for their solution. It also introduces several jump and diffusion processes which have nol been used in previous models. The technique is applied lo these processes to find explicit option valuation formulas, ..."
Abstract

Cited by 661 (4 self)
 Add to MetaCart
This paper examines the structure of option valuation problems and develops a new technique for their solution. It also introduces several jump and diffusion processes which have nol been used in previous models. The technique is applied lo these processes to find explicit option valuation formulas
Unified analysis of discontinuous Galerkin methods for elliptic problems
 SIAM J. Numer. Anal
, 2001
"... Abstract. We provide a framework for the analysis of a large class of discontinuous methods for secondorder elliptic problems. It allows for the understanding and comparison of most of the discontinuous Galerkin methods that have been proposed over the past three decades for the numerical treatment ..."
Abstract

Cited by 519 (31 self)
 Add to MetaCart
Abstract. We provide a framework for the analysis of a large class of discontinuous methods for secondorder elliptic problems. It allows for the understanding and comparison of most of the discontinuous Galerkin methods that have been proposed over the past three decades for the numerical
Constrained model predictive control: Stability and optimality
 AUTOMATICA
, 2000
"... Model predictive control is a form of control in which the current control action is obtained by solving, at each sampling instant, a finite horizon openloop optimal control problem, using the current state of the plant as the initial state; the optimization yields an optimal control sequence and t ..."
Abstract

Cited by 696 (15 self)
 Add to MetaCart
Model predictive control is a form of control in which the current control action is obtained by solving, at each sampling instant, a finite horizon openloop optimal control problem, using the current state of the plant as the initial state; the optimization yields an optimal control sequence
Optimization Flow Control, I: Basic Algorithm and Convergence
 IEEE/ACM TRANSACTIONS ON NETWORKING
, 1999
"... We propose an optimization approach to flow control where the objective is to maximize the aggregate source utility over their transmission rates. We view network links and sources as processors of a distributed computation system to solve the dual problem using gradient projection algorithm. In thi ..."
Abstract

Cited by 690 (64 self)
 Add to MetaCart
We propose an optimization approach to flow control where the objective is to maximize the aggregate source utility over their transmission rates. We view network links and sources as processors of a distributed computation system to solve the dual problem using gradient projection algorithm
CONDENSATION  conditional density propagation for visual tracking
 International Journal of Computer Vision
, 1998
"... The problem of tracking curves in dense visual clutter is challenging. Kalman filtering is inadequate because it is based on Gaussian densities which, being unimodal, cannot represent simultaneous alternative hypotheses. The Condensation algorithm uses "factored sampling", previously appli ..."
Abstract

Cited by 1499 (12 self)
 Add to MetaCart
The problem of tracking curves in dense visual clutter is challenging. Kalman filtering is inadequate because it is based on Gaussian densities which, being unimodal, cannot represent simultaneous alternative hypotheses. The Condensation algorithm uses "factored sampling", previously
A Note on the Confinement Problem
, 1973
"... This not explores the problem of confining a program during its execution so that it cannot transmit information to any other program except its caller. A set of examples attempts to stake out the boundaries of the problem. Necessary conditions for a solution are stated and informally justified. ..."
Abstract

Cited by 532 (0 self)
 Add to MetaCart
This not explores the problem of confining a program during its execution so that it cannot transmit information to any other program except its caller. A set of examples attempts to stake out the boundaries of the problem. Necessary conditions for a solution are stated and informally justified.
Particle swarm optimization
, 1995
"... eberhart @ engr.iupui.edu A concept for the optimization of nonlinear functions using particle swarm methodology is introduced. The evolution of several paradigms is outlined, and an implementation of one of the paradigms is discussed. Benchmark testing of the paradigm is described, and applications ..."
Abstract

Cited by 3535 (22 self)
 Add to MetaCart
eberhart @ engr.iupui.edu A concept for the optimization of nonlinear functions using particle swarm methodology is introduced. The evolution of several paradigms is outlined, and an implementation of one of the paradigms is discussed. Benchmark testing of the paradigm is described
A Limited Memory Algorithm for Bound Constrained Optimization
 SIAM Journal on Scientific Computing
, 1994
"... An algorithm for solving large nonlinear optimization problems with simple bounds is described. ..."
Abstract

Cited by 557 (9 self)
 Add to MetaCart
An algorithm for solving large nonlinear optimization problems with simple bounds is described.
Results 1  10
of
2,006,769