• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Tools

Sorted by:
Try your query at:
Semantic Scholar Scholar Academic
Google Bing DBLP
Results 1 - 10 of 431,982
Next 10 →

Compressive sampling

by Emmanuel J. Candès , 2006
"... Conventional wisdom and common practice in acquisition and reconstruction of images from frequency data follow the basic principle of the Nyquist density sampling theory. This principle states that to reconstruct an image, the number of Fourier samples we need to acquire must match the desired res ..."
Abstract - Cited by 1427 (15 self) - Add to MetaCart
of scientific interest accurately and sometimes even exactly from a number of samples which is far smaller than the desired resolution of the image/signal, e.g. the number of pixels in the image. It is believed that compressive sampling has far reaching implications. For example, it suggests the possibility

Learning the Kernel Matrix with Semi-Definite Programming

by Gert R. G. Lanckriet, Nello Cristianini, Laurent El Ghaoui, Peter Bartlett, Michael I. Jordan , 2002
"... Kernel-based learning algorithms work by embedding the data into a Euclidean space, and then searching for linear relations among the embedded data points. The embedding is performed implicitly, by specifying the inner products between each pair of points in the embedding space. This information ..."
Abstract - Cited by 780 (22 self) - Add to MetaCart
is contained in the so-called kernel matrix, a symmetric and positive definite matrix that encodes the relative positions of all points. Specifying this matrix amounts to specifying the geometry of the embedding space and inducing a notion of similarity in the input space---classical model selection

Scalable Recognition with a Vocabulary Tree

by David Nistér, Henrik Stewénius - IN CVPR , 2006
"... A recognition scheme that scales efficiently to a large number of objects is presented. The efficiency and quality is exhibited in a live demonstration that recognizes CD-covers from a database of 40000 images of popular music CD's. The scheme ..."
Abstract - Cited by 1043 (0 self) - Add to MetaCart
A recognition scheme that scales efficiently to a large number of objects is presented. The efficiency and quality is exhibited in a live demonstration that recognizes CD-covers from a database of 40000 images of popular music CD's. The scheme

Reversible Markov chains and random walks on graphs

by David Aldous, James Allen Fill , 2002
"... ..."
Abstract - Cited by 549 (13 self) - Add to MetaCart
Abstract not found

Convergent Tree-reweighted Message Passing for Energy Minimization

by Vladimir Kolmogorov - ACCEPTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE (PAMI), 2006. ABSTRACTACCEPTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE (PAMI) , 2006
"... Algorithms for discrete energy minimization are of fundamental importance in computer vision. In this paper we focus on the recent technique proposed by Wainwright et al. [33]- tree-reweighted max-product message passing (TRW). It was inspired by the problem of maximizing a lower bound on the energy ..."
Abstract - Cited by 491 (16 self) - Add to MetaCart
passing approaches. Experimental results demonstrate that on certain synthetic and real problems our algorithm outperforms both the ordinary belief propagation and tree-reweighted algorithm in [33]. In addition, on stereo problems with Potts interactions we obtain a lower energy than graph cuts.

SMOTE: Synthetic Minority Over-sampling Technique

by Nitesh V. Chawla, Kevin W. Bowyer, Lawrence O. Hall, W. Philip Kegelmeyer - Journal of Artificial Intelligence Research , 2002
"... An approach to the construction of classifiers from imbalanced datasets is described. A dataset is imbalanced if the classification categories are not approximately equally represented. Often real-world data sets are predominately composed of ``normal'' examples with only a small percentag ..."
Abstract - Cited by 614 (28 self) - Add to MetaCart
percentage of ``abnormal'' or ``interesting'' examples. It is also the case that the cost of misclassifying an abnormal (interesting) example as a normal example is often much higher than the cost of the reverse error. Under-sampling of the majority (normal) class has been proposed as a

Mining Frequent Patterns without Candidate Generation: A Frequent-Pattern Tree Approach

by Jiawei Han, Jian Pei, Yiwen Yin, Runying Mao - DATA MINING AND KNOWLEDGE DISCOVERY , 2004
"... Mining frequent patterns in transaction databases, time-series databases, and many other kinds of databases has been studied popularly in data mining research. Most of the previous studies adopt an Apriori-like candidate set generation-and-test approach. However, candidate set generation is still co ..."
Abstract - Cited by 1700 (64 self) - Add to MetaCart
databases, which dramatically reduces the search space. Our performance study shows that the FP-growth method is efficient and scalable for mining both long and short frequent patterns, and is about an order of magnitude faster than the Apriori algorithm and also faster than some recently reported new

Exact Sampling with Coupled Markov Chains and Applications to Statistical Mechanics

by James Gary Propp, David Bruce Wilson , 1996
"... For many applications it is useful to sample from a finite set of objects in accordance with some particular distribution. One approach is to run an ergodic (i.e., irreducible aperiodic) Markov chain whose stationary distribution is the desired distribution on this set; after the Markov chain has ..."
Abstract - Cited by 548 (13 self) - Add to MetaCart
, and that outputs samples in exact accordance with the desired distribution. The method uses couplings, which have also played a role in other sampling schemes; however, rather than running the coupled chains from the present into the future, one runs from a distant point in the past up until the present, where

M-tree: An Efficient Access Method for Similarity Search in Metric Spaces

by Paolo Ciaccia, Marco Patella, Pavel Zezula , 1997
"... A new access meth d, called M-tree, is proposed to organize and search large data sets from a generic "metric space", i.e. whE4 object proximity is only defined by a distance function satisfyingth positivity, symmetry, and triangle inequality postulates. We detail algorith[ for insertion o ..."
Abstract - Cited by 652 (38 self) - Add to MetaCart
A new access meth d, called M-tree, is proposed to organize and search large data sets from a generic "metric space", i.e. whE4 object proximity is only defined by a distance function satisfyingth positivity, symmetry, and triangle inequality postulates. We detail algorith[ for insertion

Near Optimal Signal Recovery From Random Projections: Universal Encoding Strategies?

by Emmanuel J. Candès , Terence Tao , 2004
"... Suppose we are given a vector f in RN. How many linear measurements do we need to make about f to be able to recover f to within precision ɛ in the Euclidean (ℓ2) metric? Or more exactly, suppose we are interested in a class F of such objects— discrete digital signals, images, etc; how many linear m ..."
Abstract - Cited by 1513 (20 self) - Add to MetaCart
-law), then it is possible to reconstruct f to within very high accuracy from a small number of random measurements. typical result is as follows: we rearrange the entries of f (or its coefficients in a fixed basis) in decreasing order of magnitude |f | (1) ≥ |f | (2) ≥... ≥ |f | (N), and define the weak-ℓp ball
Next 10 →
Results 1 - 10 of 431,982
Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2018 The Pennsylvania State University