Results 1  10
of
448,939
Convex Analysis
, 1970
"... In this book we aim to present, in a unified framework, a broad spectrum of mathematical theory that has grown in connection with the study of problems of optimization, equilibrium, control, and stability of linear and nonlinear systems. The title Variational Analysis reflects this breadth. For a lo ..."
Abstract

Cited by 5350 (67 self)
 Add to MetaCart
long time, ‘variational ’ problems have been identified mostly with the ‘calculus of variations’. In that venerable subject, built around the minimization of integral functionals, constraints were relatively simple and much of the focus was on infinitedimensional function spaces. A major theme
Just Relax: Convex Programming Methods for Identifying Sparse Signals in Noise
, 2006
"... This paper studies a difficult and fundamental problem that arises throughout electrical engineering, applied mathematics, and statistics. Suppose that one forms a short linear combination of elementary signals drawn from a large, fixed collection. Given an observation of the linear combination that ..."
Abstract

Cited by 496 (2 self)
 Add to MetaCart
. This paper studies a method called convex relaxation, which attempts to recover the ideal sparse signal by solving a convex program. This approach is powerful because the optimization can be completed in polynomial time with standard scientific software. The paper provides general conditions which ensure
Thresholding of statistical maps in functional neuroimaging using the false discovery rate
 Neuroimage
, 2002
"... Finding objective and effective thresholds for voxelwise statistics derived from neuroimaging data has been a longstanding problem. With at least one test performed for every voxel in an image, some correction of the thresholds is needed to control the error rates, but standard procedures for multi ..."
Abstract

Cited by 494 (8 self)
 Add to MetaCart
Finding objective and effective thresholds for voxelwise statistics derived from neuroimaging data has been a longstanding problem. With at least one test performed for every voxel in an image, some correction of the thresholds is needed to control the error rates, but standard procedures
A firstorder primaldual algorithm for convex problems with applications to imaging
, 2010
"... In this paper we study a firstorder primaldual algorithm for convex optimization problems with known saddlepoint structure. We prove convergence to a saddlepoint with rate O(1/N) in finite dimensions, which is optimal for the complete class of nonsmooth problems we are considering in this paper ..."
Abstract

Cited by 435 (20 self)
 Add to MetaCart
In this paper we study a firstorder primaldual algorithm for convex optimization problems with known saddlepoint structure. We prove convergence to a saddlepoint with rate O(1/N) in finite dimensions, which is optimal for the complete class of nonsmooth problems we are considering
A survey of generalpurpose computation on graphics hardware
, 2007
"... The rapid increase in the performance of graphics hardware, coupled with recent improvements in its programmability, have made graphics hardware acompelling platform for computationally demanding tasks in awide variety of application domains. In this report, we describe, summarize, and analyze the l ..."
Abstract

Cited by 545 (18 self)
 Add to MetaCart
the latest research in mapping generalpurpose computation to graphics hardware. We begin with the technical motivations that underlie generalpurpose computation on graphics processors (GPGPU) and describe the hardware and software developments that have led to the recent interest in this field. We then aim
Primitives for the manipulation of general subdivisions and the computations of Voronoi diagrams
 ACM Tmns. Graph
, 1985
"... The following problem is discussed: Given n points in the plane (the sites) and an arbitrary query point 4, find the site that is closest to q. This problem can be solved by constructing the Voronoi diagram of the given sites and then locating the query point in one of its regions. Two algorithms ar ..."
Abstract

Cited by 543 (11 self)
 Add to MetaCart
to the separation of the geometrical and topological aspects of the problem and to the use of two simple but powerful primitives, a geometric predicate and an operator for manipulating the topology of the diagram. The topology is represented by a new data structure for generalized diagrams, that is, embeddings
Empirical exchange rate models of the Seventies: do they fit out of sample?
 JOURNAL OF INTERNATIONAL ECONOMICS
, 1983
"... This study compares the outofsample forecasting accuracy of various structural and time series exchange rate models. We find that a random walk model performs as well as any estimated model at one to twelve month horizons for the dollar/pound, dollar/mark, dollar/yen and tradeweighted dollar exch ..."
Abstract

Cited by 831 (12 self)
 Add to MetaCart
This study compares the outofsample forecasting accuracy of various structural and time series exchange rate models. We find that a random walk model performs as well as any estimated model at one to twelve month horizons for the dollar/pound, dollar/mark, dollar/yen and tradeweighted dollar
Greedy Function Approximation: A Gradient Boosting Machine
 Annals of Statistics
, 2000
"... Function approximation is viewed from the perspective of numerical optimization in function space, rather than parameter space. A connection is made between stagewise additive expansions and steepest{descent minimization. A general gradient{descent \boosting" paradigm is developed for additi ..."
Abstract

Cited by 951 (12 self)
 Add to MetaCart
Function approximation is viewed from the perspective of numerical optimization in function space, rather than parameter space. A connection is made between stagewise additive expansions and steepest{descent minimization. A general gradient{descent \boosting" paradigm is developed
Results 1  10
of
448,939