Results 1 - 10
of
49,413
How Iris Recognition Works
, 2003
"... Algorithms developed by the author for recogniz-ing persons by their iris patterns have now been tested in six field and laboratory trials, producing no false matches in several million comparison tests. The recognition principle is the failure of a test of statis-tical independence on iris phase st ..."
Abstract
-
Cited by 495 (4 self)
- Add to MetaCart
Algorithms developed by the author for recogniz-ing persons by their iris patterns have now been tested in six field and laboratory trials, producing no false matches in several million comparison tests. The recognition principle is the failure of a test of statis-tical independence on iris phase
Image denoising using a scale mixture of Gaussians in the wavelet domain
- IEEE TRANS IMAGE PROCESSING
, 2003
"... We describe a method for removing noise from digital images, based on a statistical model of the coefficients of an overcomplete multiscale oriented basis. Neighborhoods of coefficients at adjacent positions and scales are modeled as the product of two independent random variables: a Gaussian vecto ..."
Abstract
-
Cited by 514 (17 self)
- Add to MetaCart
We describe a method for removing noise from digital images, based on a statistical model of the coefficients of an overcomplete multiscale oriented basis. Neighborhoods of coefficients at adjacent positions and scales are modeled as the product of two independent random variables: a Gaussian
Markov Random Field Models in Computer Vision
, 1994
"... . A variety of computer vision problems can be optimally posed as Bayesian labeling in which the solution of a problem is defined as the maximum a posteriori (MAP) probability estimate of the true labeling. The posterior probability is usually derived from a prior model and a likelihood model. The l ..."
Abstract
-
Cited by 515 (18 self)
- Add to MetaCart
. The latter relates to how data is observed and is problem domain dependent. The former depends on how various prior constraints are expressed. Markov Random Field Models (MRF) theory is a tool to encode contextual constraints into the prior probability. This paper presents a unified approach for MRF modeling
Blind Beamforming for Non Gaussian Signals
- IEE Proceedings-F
, 1993
"... This paper considers an application of blind identification to beamforming. The key point is to use estimates of directional vectors rather than resorting to their hypothesized value. By using estimates of the directional vectors obtained via blind identification i.e. without knowing the arrray mani ..."
Abstract
-
Cited by 704 (31 self)
- Add to MetaCart
This paper considers an application of blind identification to beamforming. The key point is to use estimates of directional vectors rather than resorting to their hypothesized value. By using estimates of the directional vectors obtained via blind identification i.e. without knowing the arrray
A Practical Guide to Wavelet Analysis
, 1998
"... A practical step-by-step guide to wavelet analysis is given, with examples taken from time series of the El Nio-- Southern Oscillation (ENSO). The guide includes a comparison to the windowed Fourier transform, the choice of an appropriate wavelet basis function, edge effects due to finite-length t ..."
Abstract
-
Cited by 833 (3 self)
- Add to MetaCart
-length time series, and the relationship between wavelet scale and Fourier frequency. New statistical significance tests for wavelet power spectra are developed by deriving theoretical wavelet spectra for white and red noise processes and using these to establish significance levels and confidence
An introduction to variable and feature selection
- Journal of Machine Learning Research
, 2003
"... Variable and feature selection have become the focus of much research in areas of application for which datasets with tens or hundreds of thousands of variables are available. ..."
Abstract
-
Cited by 1283 (16 self)
- Add to MetaCart
Variable and feature selection have become the focus of much research in areas of application for which datasets with tens or hundreds of thousands of variables are available.
Coupled hidden Markov models for complex action recognition
, 1996
"... We present algorithms for coupling and training hidden Markov models (HMMs) to model interacting processes, and demonstrate their superiority to conventional HMMs in a vision task classifying two-handed actions. HMMs are perhaps the most successful framework in perceptual computing for modeling and ..."
Abstract
-
Cited by 497 (22 self)
- Add to MetaCart
We present algorithms for coupling and training hidden Markov models (HMMs) to model interacting processes, and demonstrate their superiority to conventional HMMs in a vision task classifying two-handed actions. HMMs are perhaps the most successful framework in perceptual computing for modeling
High confidence visual recognition of persons by a test of statistical independence
- IEEE Trans. on Pattern Analysis and Machine Intelligence
, 1993
"... Abstruct- A method for rapid visual recognition of personal identity is described, based on the failure of a statistical test of independence. The most unique phenotypic feature visible in a person’s face is the detailed texture of each eye’s iris: An estimate of its statistical complexity in a samp ..."
Abstract
-
Cited by 596 (8 self)
- Add to MetaCart
Abstruct- A method for rapid visual recognition of personal identity is described, based on the failure of a statistical test of independence. The most unique phenotypic feature visible in a person’s face is the detailed texture of each eye’s iris: An estimate of its statistical complexity in a
Results 1 - 10
of
49,413