Results 1  10
of
624,096
Revisiting two classical results in graph spectra, The Electronic
 Journal of Combinatorics, Volume
"... Let µ (G) and µmin (G) be the largest and smallest eigenvalues of the adjacency matrix of a graph G. Our main results are: (i) If H is a proper subgraph of a connected graph G of order n and diameter D, then 1 µ (G) − µ (H)> µ 2D (G) n. (ii) If G is a connected nonbipartite graph of order n and ..."
Abstract

Cited by 3 (1 self)
 Add to MetaCart
Let µ (G) and µmin (G) be the largest and smallest eigenvalues of the adjacency matrix of a graph G. Our main results are: (i) If H is a proper subgraph of a connected graph G of order n and diameter D, then 1 µ (G) − µ (H)> µ 2D (G) n. (ii) If G is a connected nonbipartite graph of order n
Community detection in graphs
, 2009
"... The modern science of networks has brought significant advances to our understanding of complex systems. One of the most relevant features of graphs representing real systems is community structure, or clustering, i. e. the organization of vertices in clusters, with many edges joining vertices of th ..."
Abstract

Cited by 801 (1 self)
 Add to MetaCart
The modern science of networks has brought significant advances to our understanding of complex systems. One of the most relevant features of graphs representing real systems is community structure, or clustering, i. e. the organization of vertices in clusters, with many edges joining vertices
Factor Graphs and the SumProduct Algorithm
 IEEE TRANSACTIONS ON INFORMATION THEORY
, 1998
"... A factor graph is a bipartite graph that expresses how a "global" function of many variables factors into a product of "local" functions. Factor graphs subsume many other graphical models including Bayesian networks, Markov random fields, and Tanner graphs. Following one simple c ..."
Abstract

Cited by 1787 (72 self)
 Add to MetaCart
A factor graph is a bipartite graph that expresses how a "global" function of many variables factors into a product of "local" functions. Factor graphs subsume many other graphical models including Bayesian networks, Markov random fields, and Tanner graphs. Following one simple
Intrinsic and extrinsic motivations: Classic definitions and new directions
 Contemporary Educational Psychology
, 2000
"... Intrinsic and extrinsic types of motivation have been widely studied, and the distinction between them has shed important light on both developmental and educational practices. In this review we revisit the classic definitions of intrinsic and extrinsic motivation in light of contemporary research a ..."
Abstract

Cited by 561 (8 self)
 Add to MetaCart
Intrinsic and extrinsic types of motivation have been widely studied, and the distinction between them has shed important light on both developmental and educational practices. In this review we revisit the classic definitions of intrinsic and extrinsic motivation in light of contemporary research
Classical negation in logic programs and disjunctive databases
 New Generation Computing
, 1991
"... An important limitation of traditional logic programming as a knowledge representation tool, in comparison with classical logic, is that logic programming does not allow us to deal directly with incomplete information. In order to overcome this limitation, we extend the class of general logic progra ..."
Abstract

Cited by 1050 (76 self)
 Add to MetaCart
An important limitation of traditional logic programming as a knowledge representation tool, in comparison with classical logic, is that logic programming does not allow us to deal directly with incomplete information. In order to overcome this limitation, we extend the class of general logic
Graphbased algorithms for Boolean function manipulation
 IEEE TRANSACTIONS ON COMPUTERS
, 1986
"... In this paper we present a new data structure for representing Boolean functions and an associated set of manipulation algorithms. Functions are represented by directed, acyclic graphs in a manner similar to the representations introduced by Lee [1] and Akers [2], but with further restrictions on th ..."
Abstract

Cited by 3499 (47 self)
 Add to MetaCart
to the sizes of the graphs being operated on, and hence are quite efficient as long as the graphs do not grow too large. We present experimental results from applying these algorithms to problems in logic design verification that demonstrate the practicality of our approach.
Secure Group Communications Using Key Graphs
, 1998
"... Many emerging applications (e.g., teleconference, realtime information services, pay per view, distributed interactive simulation, and collaborative work) are based upon a group communications model, i.e., they require packet delivery from one or more authorized senders to a very large number of au ..."
Abstract

Cited by 552 (17 self)
 Add to MetaCart
of authorized receivers. As a result, securing group communications (i.e., providing confidentiality, integrity, and authenticity of messages delivered between group members) will become a critical networking issue. In this paper, we present a novel solution to the scalability problem of group/multicast key
"GrabCut”  interactive foreground extraction using iterated graph cuts
 ACM TRANS. GRAPH
, 2004
"... The problem of efficient, interactive foreground/background segmentation in still images is of great practical importance in image editing. Classical image segmentation tools use either texture (colour) information, e.g. Magic Wand, or edge (contrast) information, e.g. Intelligent Scissors. Recently ..."
Abstract

Cited by 1140 (36 self)
 Add to MetaCart
The problem of efficient, interactive foreground/background segmentation in still images is of great practical importance in image editing. Classical image segmentation tools use either texture (colour) information, e.g. Magic Wand, or edge (contrast) information, e.g. Intelligent Scissors
A Critical Point For Random Graphs With A Given Degree Sequence
, 2000
"... Given a sequence of nonnegative real numbers 0 ; 1 ; : : : which sum to 1, we consider random graphs having approximately i n vertices of degree i. Essentially, we show that if P i(i \Gamma 2) i ? 0 then such graphs almost surely have a giant component, while if P i(i \Gamma 2) i ! 0 the ..."
Abstract

Cited by 511 (8 self)
 Add to MetaCart
then almost surely all components in such graphs are small. We can apply these results to G n;p ; G n;M , and other wellknown models of random graphs. There are also applications related to the chromatic number of sparse random graphs.
Results 1  10
of
624,096