• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations

Tools

Sorted by:
Try your query at:
Semantic Scholar Scholar Academic
Google Bing DBLP
Results 1 - 10 of 64,220
Next 10 →

SIMPLIcity: Semantics-Sensitive Integrated Matching for Picture LIbraries

by James Z. Wang, Jia Li, Gio Wiederhold - IEEE Transactions on Pattern Analysis and Machine Intelligence , 2001
"... The need for efficient content-based image retrieval has increased tremendously in many application areas such as biomedicine, military, commerce, education, and Web image classification and searching. We present here SIMPLIcity (Semanticssensitive Integrated Matching for Picture LIbraries), an imag ..."
Abstract - Cited by 541 (35 self) - Add to MetaCart
The need for efficient content-based image retrieval has increased tremendously in many application areas such as biomedicine, military, commerce, education, and Web image classification and searching. We present here SIMPLIcity (Semanticssensitive Integrated Matching for Picture LIbraries

Wavelets and Subband Coding

by Martin Vetterli, Jelena Kovačević , 2007
"... ..."
Abstract - Cited by 608 (32 self) - Add to MetaCart
Abstract not found

A Guided Tour to Approximate String Matching

by Gonzalo Navarro - ACM COMPUTING SURVEYS , 1999
"... We survey the current techniques to cope with the problem of string matching allowing errors. This is becoming a more and more relevant issue for many fast growing areas such as information retrieval and computational biology. We focus on online searching and mostly on edit distance, explaining t ..."
Abstract - Cited by 584 (38 self) - Add to MetaCart
We survey the current techniques to cope with the problem of string matching allowing errors. This is becoming a more and more relevant issue for many fast growing areas such as information retrieval and computational biology. We focus on online searching and mostly on edit distance, explaining

Multiple Description Coding: Compression Meets the Network

by Vivek K Goyal , 2001
"... This article focuses on the compressed representations of the pictures ..."
Abstract - Cited by 435 (9 self) - Add to MetaCart
This article focuses on the compressed representations of the pictures

Reversible Markov chains and random walks on graphs

by David Aldous, James Allen Fill , 2002
"... ..."
Abstract - Cited by 549 (13 self) - Add to MetaCart
Abstract not found

Detecting faces in images: A survey

by Ming-hsuan Yang, David J. Kriegman, Narendra Ahuja - IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE , 2002
"... Images containing faces are essential to intelligent vision-based human computer interaction, and research efforts in face processing include face recognition, face tracking, pose estimation, and expression recognition. However, many reported methods assume that the faces in an image or an image se ..."
Abstract - Cited by 831 (4 self) - Add to MetaCart
Images containing faces are essential to intelligent vision-based human computer interaction, and research efforts in face processing include face recognition, face tracking, pose estimation, and expression recognition. However, many reported methods assume that the faces in an image or an image

Good Error-Correcting Codes based on Very Sparse Matrices

by David J.C. MacKay , 1999
"... We study two families of error-correcting codes defined in terms of very sparse matrices. "MN" (MacKay--Neal) codes are recently invented, and "Gallager codes" were first investigated in 1962, but appear to have been largely forgotten, in spite of their excellent properties. The ..."
Abstract - Cited by 741 (23 self) - Add to MetaCart
We study two families of error-correcting codes defined in terms of very sparse matrices. "MN" (MacKay--Neal) codes are recently invented, and "Gallager codes" were first investigated in 1962, but appear to have been largely forgotten, in spite of their excellent properties

Content-based image retrieval at the end of the early years

by Arnold W. M. Smeulders, Marcel Worring, Simone Santini, Amarnath Gupta, Ramesh Jain - IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE , 2000
"... The paper presents a review of 200 references in content-based image retrieval. The paper starts with discussing the working conditions of content-based retrieval: patterns of use, types of pictures, the role of semantics, and the sensory gap. Subsequent sections discuss computational steps for imag ..."
Abstract - Cited by 1594 (24 self) - Add to MetaCart
The paper presents a review of 200 references in content-based image retrieval. The paper starts with discussing the working conditions of content-based retrieval: patterns of use, types of pictures, the role of semantics, and the sensory gap. Subsequent sections discuss computational steps

The Elements of Statistical Learning -- Data Mining, Inference, and Prediction

by Trevor Hastie, Robert Tibshirani, Jerome Friedman
"... ..."
Abstract - Cited by 1320 (13 self) - Add to MetaCart
Abstract not found

Image retrieval: Current techniques, promising directions and open issues

by Yong Rui, Thomas S. Huang - Journal of Visual Communication and Image Representation , 1999
"... This paper provides a comprehensive survey of the technical achievements in the research area of image retrieval, especially content-based image retrieval, an area that has been so active and prosperous in the past few years. The survey includes 100+ papers covering the research aspects of image fea ..."
Abstract - Cited by 492 (14 self) - Add to MetaCart
feature representation and extraction, multidimensional indexing, and system design, three of the fundamental bases of content-based image retrieval. Furthermore, based on the state-of-the-art technology available now and the demand from real-world applications, open research issues are identified
Next 10 →
Results 1 - 10 of 64,220
Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University