Results 1  10
of
241,674
An Optimal Algorithm for Approximate Nearest Neighbor Searching in Fixed Dimensions
 ACMSIAM SYMPOSIUM ON DISCRETE ALGORITHMS
, 1994
"... Consider a set S of n data points in real ddimensional space, R d , where distances are measured using any Minkowski metric. In nearest neighbor searching we preprocess S into a data structure, so that given any query point q 2 R d , the closest point of S to q can be reported quickly. Given any po ..."
Abstract

Cited by 983 (32 self)
 Add to MetaCart
query point q 2 R d , and ffl ? 0, a (1 + ffl)approximate nearest neighbor of q can be computed in O(c d;ffl log n) time, where c d;ffl d d1 + 6d=ffle d is a factor depending only on dimension and ffl. In general, we show that given an integer k 1, (1 + ffl)approximations to the k nearest neighbors
Fast approximate nearest neighbors with automatic algorithm configuration
 In VISAPP International Conference on Computer Vision Theory and Applications
, 2009
"... nearestneighbors search, randomized kdtrees, hierarchical kmeans tree, clustering. For many computer vision problems, the most time consuming component consists of nearest neighbor matching in highdimensional spaces. There are no known exact algorithms for solving these highdimensional problems ..."
Abstract

Cited by 448 (2 self)
 Add to MetaCart
nearestneighbors search, randomized kdtrees, hierarchical kmeans tree, clustering. For many computer vision problems, the most time consuming component consists of nearest neighbor matching in highdimensional spaces. There are no known exact algorithms for solving these high
Nearoptimal hashing algorithms for approximate nearest neighbor in high dimensions
, 2008
"... In this article, we give an overview of efficient algorithms for the approximate and exact nearest neighbor problem. The goal is to preprocess a dataset of objects (e.g., images) so that later, given a new query object, one can quickly return the dataset object that is most similar to the query. The ..."
Abstract

Cited by 443 (7 self)
 Add to MetaCart
In this article, we give an overview of efficient algorithms for the approximate and exact nearest neighbor problem. The goal is to preprocess a dataset of objects (e.g., images) so that later, given a new query object, one can quickly return the dataset object that is most similar to the query
When Is "Nearest Neighbor" Meaningful?
 In Int. Conf. on Database Theory
, 1999
"... . We explore the effect of dimensionality on the "nearest neighbor " problem. We show that under a broad set of conditions (much broader than independent and identically distributed dimensions), as dimensionality increases, the distance to the nearest data point approaches the distance ..."
Abstract

Cited by 402 (1 self)
 Add to MetaCart
. We explore the effect of dimensionality on the "nearest neighbor " problem. We show that under a broad set of conditions (much broader than independent and identically distributed dimensions), as dimensionality increases, the distance to the nearest data point approaches
Influence Sets Based on Reverse Nearest Neighbor Queries
 In SIGMOD
, 2000
"... Inherent in the operation of many decision support and continuous referral systems is the notion of the "influence" of a data point on the database. This notion arises in examples such as finding the set of customers affected by the opening of a new store outlet location, notifying the sub ..."
Abstract

Cited by 153 (1 self)
 Add to MetaCart
the subset of subscribers to a digital library who will find a newly added document most relevant, etc. Standard approaches to determining the influence set of a data point involve range searching and nearest neighbor queries. In this paper, we formalize a novel notion of influence based on reverse neighbor
Discriminant Adaptive Nearest Neighbor Classification
, 1994
"... Nearest neighbor classification expects the class conditional probabilities to be locally constant, and suffers from bias in high dimensions. We propose a locally adaptive form of nearest neighbor classification to try to ameliorate this curse of dimensionality. We use a local linear discriminant an ..."
Abstract

Cited by 322 (1 self)
 Add to MetaCart
Nearest neighbor classification expects the class conditional probabilities to be locally constant, and suffers from bias in high dimensions. We propose a locally adaptive form of nearest neighbor classification to try to ameliorate this curse of dimensionality. We use a local linear discriminant
Approximate Nearest Neighbor Queries in Fixed Dimensions
, 1993
"... Given a set of n points in ddimensional Euclidean space, S ae E d , and a query point q 2 E d , we wish to determine the nearest neighbor of q, that is, the point of S whose Euclidean distance to q is minimum. The goal is to preprocess the point set S, such that queries can be answered as effic ..."
Abstract

Cited by 136 (9 self)
 Add to MetaCart
Given a set of n points in ddimensional Euclidean space, S ae E d , and a query point q 2 E d , we wish to determine the nearest neighbor of q, that is, the point of S whose Euclidean distance to q is minimum. The goal is to preprocess the point set S, such that queries can be answered
Fault Localization with Nearest Neighbor Queries
, 2003
"... We present a method for performing fault localization using similar program spectra. Our method assumes the existence of a faulty run and a larger number of correct runs. It then selects according to a distance criterion the correct run that most resembles the faulty run, compares the spectra corres ..."
Abstract

Cited by 227 (2 self)
 Add to MetaCart
We present a method for performing fault localization using similar program spectra. Our method assumes the existence of a faulty run and a larger number of correct runs. It then selects according to a distance criterion the correct run that most resembles the faulty run, compares the spectra corresponding to these two runs, and produces a report of "suspicious" parts of the program. Our method is widely applicable because it does not require any knowledge of the program input and no more information from the user than a classification of the runs as either "correct" or "faulty". To experimentally validate the viability of the method, we implemented it in a tool, WHITHER using basic block profiling spectra. We experimented with two different similarity measures and the Siemens suite of 132 programs with injected bugs. To measure the success of the tool, we developed a generic method for establishing the quality of a report. The method is based on the way an "ideal user" would navigate the program using the report to save effort during debugging. The best results we obtained were, on average, above 50%, meaning that our ideal user would avoid looking at half of the program.
Similarity search in high dimensions via hashing
, 1999
"... The nearest or nearneighbor query problems arise in a large variety of database applications, usually in the context of similarity searching. Of late, there has been increasing interest in building search/index structures for performing similarity search over highdimensional data, e.g., image dat ..."
Abstract

Cited by 622 (13 self)
 Add to MetaCart
The nearest or nearneighbor query problems arise in a large variety of database applications, usually in the context of similarity searching. Of late, there has been increasing interest in building search/index structures for performing similarity search over highdimensional data, e.g., image
Results 1  10
of
241,674