Results 1  10
of
88,887
Singularity Detection And Processing With Wavelets
 IEEE Transactions on Information Theory
, 1992
"... Most of a signal information is often found in irregular structures and transient phenomena. We review the mathematical characterization of singularities with Lipschitz exponents. The main theorems that estimate local Lipschitz exponents of functions, from the evolution across scales of their wavele ..."
Abstract

Cited by 590 (13 self)
 Add to MetaCart
Most of a signal information is often found in irregular structures and transient phenomena. We review the mathematical characterization of singularities with Lipschitz exponents. The main theorems that estimate local Lipschitz exponents of functions, from the evolution across scales
Adaptive discretization of an integrodifferential equation with a weakly singular convolution kernel
 Comput. Methods Appl. Mech. Engrg
"... Abstract. We study a dynamic model for viscoelastic materials based on a constitutive equation of fractional order. This results in an integrodifferential equation with a weakly singular convolution kernel. We discretize in the spatial variable by a standard Galerkin finite element method. We prove ..."
Abstract

Cited by 9 (2 self)
 Add to MetaCart
Abstract. We study a dynamic model for viscoelastic materials based on a constitutive equation of fractional order. This results in an integrodifferential equation with a weakly singular convolution kernel. We discretize in the spatial variable by a standard Galerkin finite element method. We prove
The selfduality equations on a Riemann surface
 Proc. Lond. Math. Soc., III. Ser
, 1987
"... In this paper we shall study a special class of solutions of the selfdual YangMills equations. The original selfduality equations which arose in mathematical physics were defined on Euclidean 4space. The physically relevant solutions were the ones with finite action—the socalled 'instanton ..."
Abstract

Cited by 524 (6 self)
 Add to MetaCart
In this paper we shall study a special class of solutions of the selfdual YangMills equations. The original selfduality equations which arose in mathematical physics were defined on Euclidean 4space. The physically relevant solutions were the ones with finite action—the socalled &apos
Inverse Acoustic and Electromagnetic Scattering Theory, Second Edition
, 1998
"... Abstract. This paper is a survey of the inverse scattering problem for timeharmonic acoustic and electromagnetic waves at fixed frequency. We begin by a discussion of “weak scattering ” and Newtontype methods for solving the inverse scattering problem for acoustic waves, including a brief discussi ..."
Abstract

Cited by 1072 (45 self)
 Add to MetaCart
Abstract. This paper is a survey of the inverse scattering problem for timeharmonic acoustic and electromagnetic waves at fixed frequency. We begin by a discussion of “weak scattering ” and Newtontype methods for solving the inverse scattering problem for acoustic waves, including a brief
Fronts propagating with curvature dependent speed: algorithms based on Hamilton–Jacobi formulations
 Journal of Computational Physics
, 1988
"... We devise new numerical algorithms, called PSC algorithms, for following fronts propagating with curvaturedependent speed. The speed may be an arbitrary function of curvature, and the front can also be passively advected by an underlying flow. These algorithms approximate the equations of motion, w ..."
Abstract

Cited by 1183 (64 self)
 Add to MetaCart
, which resemble HamiltonJacobi equations with parabolic righthandsides, by using techniques from the hyperbolic conservation laws. Nonoscillatory schemes of various orders of accuracy are used to solve the equations, providing methods that accurately capture the formation of sharp gradients and cusps
Numerical Solution of the Nonlinear Fredholm Integral Equation and the Fredholm Integrodifferential Equation of Second Kind using Chebyshev Wavelets
, 2012
"... In this paper, a numerical method to solve nonlinear Fredholm integral equations of second kind is proposed and some numerical notes about this method are addressed. The method utilizes Chebyshev wavelets constructed on the unit interval as a basis in the Galerkin method. This approach reduces this ..."
Abstract
 Add to MetaCart
this type of integral equation to solve a nonlinear system of algebraic equation. The method is also used to solve Fredholm integrodifferential equation of second kind. Several numerical examples are presented to compare accuracy of Chebyshev wavelet Galerkin method with methods using polynomial Chebyshev
Results 1  10
of
88,887