• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Tools

Sorted by:
Try your query at:
Semantic Scholar Scholar Academic
Google Bing DBLP
Results 1 - 10 of 110,523
Next 10 →

Visual reconstruction

by Andrew Blake, Andrew Zisserman , 1987
"... ..."
Abstract - Cited by 891 (3 self) - Add to MetaCart
Abstract not found

CONDENSATION - conditional density propagation for visual tracking

by Michael Isard, Andrew Blake - International Journal of Computer Vision , 1998
"... The problem of tracking curves in dense visual clutter is challenging. Kalman filtering is inadequate because it is based on Gaussian densities which, being unimodal, cannot represent simultaneous alternative hypotheses. The Condensation algorithm uses "factored sampling", previously appli ..."
Abstract - Cited by 1499 (12 self) - Add to MetaCart
The problem of tracking curves in dense visual clutter is challenging. Kalman filtering is inadequate because it is based on Gaussian densities which, being unimodal, cannot represent simultaneous alternative hypotheses. The Condensation algorithm uses "factored sampling", previously

High confidence visual recognition of persons by a test of statistical independence

by John G. Daugman - IEEE Trans. on Pattern Analysis and Machine Intelligence , 1993
"... Abstruct- A method for rapid visual recognition of personal identity is described, based on the failure of a statistical test of independence. The most unique phenotypic feature visible in a person’s face is the detailed texture of each eye’s iris: An estimate of its statistical complexity in a samp ..."
Abstract - Cited by 596 (8 self) - Add to MetaCart
Abstruct- A method for rapid visual recognition of personal identity is described, based on the failure of a statistical test of independence. The most unique phenotypic feature visible in a person’s face is the detailed texture of each eye’s iris: An estimate of its statistical complexity in a

The 2005 pascal visual object classes challenge

by Mark Everingham, Andrew Zisserman, Christopher K. I. Williams, Luc Van Gool, Moray Allan, Christopher M. Bishop, Olivier Chapelle, Navneet Dalal, Thomas Deselaers, Gyuri Dorkó, Stefan Duffner, Jan Eichhorn, Jason D. R. Farquhar, Mario Fritz, Christophe Garcia, Tom Griffiths, Frederic Jurie, Daniel Keysers, Markus Koskela, Jorma Laaksonen, Diane Larlus, Bastian Leibe, Hongying Meng, Hermann Ney, Bernt Schiele, Cordelia Schmid, Edgar Seemann, John Shawe-taylor, Amos Storkey, Or Szedmak, Bill Triggs, Ilkay Ulusoy, Ville Viitaniemi, Jianguo Zhang , 2006
"... Abstract. The PASCAL Visual Object Classes Challenge ran from February to March 2005. The goal of the challenge was to recognize objects from a number of visual object classes in realistic scenes (i.e. not pre-segmented objects). Four object classes were selected: motorbikes, bicycles, cars and peop ..."
Abstract - Cited by 633 (24 self) - Add to MetaCart
Abstract. The PASCAL Visual Object Classes Challenge ran from February to March 2005. The goal of the challenge was to recognize objects from a number of visual object classes in realistic scenes (i.e. not pre-segmented objects). Four object classes were selected: motorbikes, bicycles, cars

The PASCAL Visual Object Classes (VOC) challenge

by Mark Everingham, Luc Van Gool, C. K. I. Williams, J. Winn, Andrew Zisserman , 2009
"... ... is a benchmark in visual object category recognition and detection, providing the vision and machine learning communities with a standard dataset of images and annotation, and standard evaluation procedures. Organised annually from 2005 to present, the challenge and its associated dataset has be ..."
Abstract - Cited by 624 (20 self) - Add to MetaCart
... is a benchmark in visual object category recognition and detection, providing the vision and machine learning communities with a standard dataset of images and annotation, and standard evaluation procedures. Organised annually from 2005 to present, the challenge and its associated dataset has

Visual interpretation of hand gestures for human-computer interaction: A review

by Vladimir I. Pavlovic, Rajeev Sharma, Thomas S. Huang - IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE , 1997
"... The use of hand gestures provides an attractive alternative to cumbersome interface devices for human-computer interaction (HCI). In particular, visual interpretation of hand gestures can help in achieving the ease and naturalness desired for HCI. This has motivated a very active research area conc ..."
Abstract - Cited by 478 (18 self) - Add to MetaCart
concerned with computer vision-based analysis and interpretation of hand gestures. We survey the literature on visual interpretation of hand gestures in the context of its role in HCI. This discussion is organized on the basis of the method used for modeling, analyzing, and recognizing gestures. Important

EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis

by Arnaud Delorme, Scott Makeig - J. Neurosci. Methods
"... Abstract: We have developed a toolbox and graphic user interface, EEGLAB, running under the cross-platform MATLAB environment (The Mathworks, Inc.) for processing collections of single-trial and/or averaged EEG data of any number of channels. Available functions include EEG data, channel and event i ..."
Abstract - Cited by 836 (44 self) - Add to MetaCart
information importing, data visualization (scrolling, scalp map and dipole model plotting, plus multi-trial ERP-image plots), preprocessing (including artifact rejection, filtering, epoch selection, and averaging), Independent Component Analysis (ICA) and time/frequency decompositions including channel

A Practical Guide to Wavelet Analysis

by Christopher Torrence, Gilbert P. Compo , 1998
"... A practical step-by-step guide to wavelet analysis is given, with examples taken from time series of the El Nio-- Southern Oscillation (ENSO). The guide includes a comparison to the windowed Fourier transform, the choice of an appropriate wavelet basis function, edge effects due to finite-length t ..."
Abstract - Cited by 833 (3 self) - Add to MetaCart
A practical step-by-step guide to wavelet analysis is given, with examples taken from time series of the El Nio-- Southern Oscillation (ENSO). The guide includes a comparison to the windowed Fourier transform, the choice of an appropriate wavelet basis function, edge effects due to finite

Tinydb: An acquisitional query processing system for sensor networks

by Samuel R. Madden, Michael J. Franklin, Joseph M. Hellerstein, Wei Hong - ACM Trans. Database Syst , 2005
"... We discuss the design of an acquisitional query processor for data collection in sensor networks. Acquisitional issues are those that pertain to where, when, and how often data is physically acquired (sampled) and delivered to query processing operators. By focusing on the locations and costs of acq ..."
Abstract - Cited by 609 (8 self) - Add to MetaCart
We discuss the design of an acquisitional query processor for data collection in sensor networks. Acquisitional issues are those that pertain to where, when, and how often data is physically acquired (sampled) and delivered to query processing operators. By focusing on the locations and costs

The Skyline Operator

by Stephan Börzsönyi, Donald Kossmann, Konrad Stocker - IN ICDE , 2001
"... We propose to extend database systems by a Skyline operation. This operation filters out a set of interesting points from a potentially large set of data points. A point is interesting if it is not dominated by any other point. For example, a hotel might be interesting for somebody traveling to Nass ..."
Abstract - Cited by 558 (3 self) - Add to MetaCart
We propose to extend database systems by a Skyline operation. This operation filters out a set of interesting points from a potentially large set of data points. A point is interesting if it is not dominated by any other point. For example, a hotel might be interesting for somebody traveling
Next 10 →
Results 1 - 10 of 110,523
Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University