Results 1  10
of
30,777
Thin Heaps, Thick Heaps
, 2006
"... The Fibonacci heap was devised to provide an especially efficient implementation of Dijkstra’s shortest path algorithm. Although asyptotically efficient, it is not as fast in practice as other heap implementations. Expanding on ideas of Høyer, we describe three heap implementations (two versions of ..."
Abstract

Cited by 9 (5 self)
 Add to MetaCart
The Fibonacci heap was devised to provide an especially efficient implementation of Dijkstra’s shortest path algorithm. Although asyptotically efficient, it is not as fast in practice as other heap implementations. Expanding on ideas of Høyer, we describe three heap implementations (two versions
Violation heaps: A better substitute for Fibonacci heaps
, 2008
"... We give a priority queue that achieves the same amortized bounds as Fibonacci heaps. Namely, findmin requires O(1) worstcase time, insert, meld and decreasekey require O(1) amortized time, and deletemin requires O(log n) amortized time. Our structure is simple and promises a more efficient pract ..."
Abstract

Cited by 3 (0 self)
 Add to MetaCart
We give a priority queue that achieves the same amortized bounds as Fibonacci heaps. Namely, findmin requires O(1) worstcase time, insert, meld and decreasekey require O(1) amortized time, and deletemin requires O(log n) amortized time. Our structure is simple and promises a more efficient
Twotier relaxed heaps
 Proceedings of the 17th International Symposium on Algorithms and Computation, Lecture Notes in Computer Science 4288, SpringerVerlag
, 2006
"... Abstract. We introduce an adaptation of runrelaxed heaps which provides efficient heap operations with respect to the number of element comparisons performed. Our data structure guarantees the worstcase cost of O(1) for findmin, insert, and decrease; and the worstcase cost of O(lg n) with at mos ..."
Abstract

Cited by 11 (8 self)
 Add to MetaCart
Abstract. We introduce an adaptation of runrelaxed heaps which provides efficient heap operations with respect to the number of element comparisons performed. Our data structure guarantees the worstcase cost of O(1) for findmin, insert, and decrease; and the worstcase cost of O(lg n
Strict Fibonacci Heaps
 STOC
, 2012
"... We present the first pointerbased heap implementation with time bounds matching those of Fibonacci heaps in the worst case. We support makeheap, insert, findmin, meld and decreasekey in worstcase O(1) time, and delete and deletemin in worstcase O(lgn) time, where n is the size of the heap. The ..."
Abstract

Cited by 5 (3 self)
 Add to MetaCart
We present the first pointerbased heap implementation with time bounds matching those of Fibonacci heaps in the worst case. We support makeheap, insert, findmin, meld and decreasekey in worstcase O(1) time, and delete and deletemin in worstcase O(lgn) time, where n is the size of the heap
Relaxed Fibonacci heaps: An alternative to Fibonacci heaps with worst case rather than amortized time bounds
, 1995
"... We present a new data structure called relaxed Fibonacci heaps for implementing priority queues on a RAM. Relaxed Fibonacci heaps support the operations nd minimum, insert, decrease key and meld, each in O(1) worst case time and delete and delete min in O(log n) worst case time. ..."
Abstract

Cited by 1 (0 self)
 Add to MetaCart
We present a new data structure called relaxed Fibonacci heaps for implementing priority queues on a RAM. Relaxed Fibonacci heaps support the operations nd minimum, insert, decrease key and meld, each in O(1) worst case time and delete and delete min in O(log n) worst case time.
Dryad: Distributed DataParallel Programs from Sequential Building Blocks
 In EuroSys
, 2007
"... Dryad is a generalpurpose distributed execution engine for coarsegrain dataparallel applications. A Dryad application combines computational “vertices ” with communication “channels ” to form a dataflow graph. Dryad runs the application by executing the vertices of this graph on a set of availa ..."
Abstract

Cited by 730 (27 self)
 Add to MetaCart
Dryad is a generalpurpose distributed execution engine for coarsegrain dataparallel applications. A Dryad application combines computational “vertices ” with communication “channels ” to form a dataflow graph. Dryad runs the application by executing the vertices of this graph on a set
Treadmarks: Shared memory computing on networks of workstations
 Computer
, 1996
"... TreadMarks supports parallel computing on networks of workstations by providing the application with a shared memory abstraction. Shared memory facilitates the transition from sequential to parallel programs. After identifying possible sources of parallelism in the code, most of the data structures ..."
Abstract

Cited by 484 (37 self)
 Add to MetaCart
TreadMarks supports parallel computing on networks of workstations by providing the application with a shared memory abstraction. Shared memory facilitates the transition from sequential to parallel programs. After identifying possible sources of parallelism in the code, most of the data structures
Fibonacci heaps revisited
 CoRR
"... The Fibonacci heap is a classic data structure that supports deletions in logarithmic amortized time and all other heap operations in O(1) amortized time. We explore the design space of this data structure. We propose a version with the following improvements over the original: (i) Each heap is repr ..."
Abstract

Cited by 1 (1 self)
 Add to MetaCart
The Fibonacci heap is a classic data structure that supports deletions in logarithmic amortized time and all other heap operations in O(1) amortized time. We explore the design space of this data structure. We propose a version with the following improvements over the original: (i) Each heap
Fibonacci Heaps and Their Uses in . . .
, 1987
"... In this paper we develop a new data structure for implementing heaps (priority queues). Our structure, Fibonacci heaps (abbreviated Fheaps), extends the binomial queues proposed by Vuillemin and studied further by Brown. Fheaps support arbitrary deletion from an nitem heap in qlogn) amortized t ..."
Abstract

Cited by 2 (0 self)
 Add to MetaCart
In this paper we develop a new data structure for implementing heaps (priority queues). Our structure, Fibonacci heaps (abbreviated Fheaps), extends the binomial queues proposed by Vuillemin and studied further by Brown. Fheaps support arbitrary deletion from an nitem heap in qlogn) amortized
Results 1  10
of
30,777