Results 1  10
of
2,324,857
Relative Velocity Estimation Using Multidimensional Scaling
"... Abstract—Localization is a fundamental challenge for any wireless network of nodes, in particular when the nodes are mobile. For an anchorless network of mobile nodes, we present a relative velocity estimation algorithm based on multidimensional scaling. We propose a generalized twoway ranging mode ..."
Abstract

Cited by 3 (1 self)
 Add to MetaCart
Abstract—Localization is a fundamental challenge for any wireless network of nodes, in particular when the nodes are mobile. For an anchorless network of mobile nodes, we present a relative velocity estimation algorithm based on multidimensional scaling. We propose a generalized twoway ranging
N Degrees of Separation: MultiDimensional Separation of Concerns
 IN PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING
, 1999
"... Done well, separation of concerns can provide many software engineering benefits, including reduced complexity, improved reusability, and simpler evolution. The choice of boundaries for separate concerns depends on both requirements on the system and on the kind(s) of decompositionand composition a ..."
Abstract

Cited by 514 (8 self)
 Add to MetaCart
Done well, separation of concerns can provide many software engineering benefits, including reduced complexity, improved reusability, and simpler evolution. The choice of boundaries for separate concerns depends on both requirements on the system and on the kind(s) of decompositionand composition a given formalism supports. The predominant methodologies and formalisms available, however, support only orthogonal separations of concerns, along single dimensions of composition and decomposition. These characteristics lead to a number of wellknown and difficult problems. This paper describes a new paradigm for modeling and implementing software artifacts, one that permits separation of overlapping concerns along multiple dimensions of composition and decomposition. This approach addresses numerous problems throughout the software lifecycle in achieving wellengineered, evolvable, flexible software artifacts and traceability across artifacts.
The particel swarm: Explosion, stability, and convergence in a multidimensional complex space
 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTION
"... The particle swarm is an algorithm for finding optimal regions of complex search spaces through interaction of individuals in a population of particles. Though the algorithm, which is based on a metaphor of social interaction, has been shown to perform well, researchers have not adequately explained ..."
Abstract

Cited by 822 (10 self)
 Add to MetaCart
explained how it works. Further, traditional versions of the algorithm have had some dynamical properties that were not considered to be desirable, notably the particles’ velocities needed to be limited in order to control their trajectories. The present paper analyzes the particle’s trajectory as it moves
Shiftable Multiscale Transforms
, 1992
"... Orthogonal wavelet transforms have recently become a popular representation for multiscale signal and image analysis. One of the major drawbacks of these representations is their lack of translation invariance: the content of wavelet subbands is unstable under translations of the input signal. Wavel ..."
Abstract

Cited by 557 (36 self)
 Add to MetaCart
lack of aliasing; thus, the conditions under which the property holds are specified by the sampling theorem. Shiftability may also be considered in the context of other domains, particularly orientation and scale. We explore "jointly shiftable" transforms that are simultaneously shiftable
Image denoising using a scale mixture of Gaussians in the wavelet domain
 IEEE TRANS IMAGE PROCESSING
, 2003
"... We describe a method for removing noise from digital images, based on a statistical model of the coefficients of an overcomplete multiscale oriented basis. Neighborhoods of coefficients at adjacent positions and scales are modeled as the product of two independent random variables: a Gaussian vecto ..."
Abstract

Cited by 514 (17 self)
 Add to MetaCart
We describe a method for removing noise from digital images, based on a statistical model of the coefficients of an overcomplete multiscale oriented basis. Neighborhoods of coefficients at adjacent positions and scales are modeled as the product of two independent random variables: a Gaussian
ModelBased Clustering, Discriminant Analysis, and Density Estimation
 JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION
, 2000
"... Cluster analysis is the automated search for groups of related observations in a data set. Most clustering done in practice is based largely on heuristic but intuitively reasonable procedures and most clustering methods available in commercial software are also of this type. However, there is little ..."
Abstract

Cited by 557 (28 self)
 Add to MetaCart
for modelbased clustering that provides a principled statistical approach to these issues. We also show that this can be useful for other problems in multivariate analysis, such as discriminant analysis and multivariate density estimation. We give examples from medical diagnosis, mineeld detection, cluster
Object class recognition by unsupervised scaleinvariant learning
 In CVPR
, 2003
"... We present a method to learn and recognize object class models from unlabeled and unsegmented cluttered scenes in a scale invariant manner. Objects are modeled as flexible constellations of parts. A probabilistic representation is used for all aspects of the object: shape, appearance, occlusion and ..."
Abstract

Cited by 1124 (49 self)
 Add to MetaCart
and relative scale. An entropybased feature detector is used to select regions and their scale within the image. In learning the parameters of the scaleinvariant object model are estimated. This is done using expectationmaximization in a maximumlikelihood setting. In recognition, this model is used in a
Estimation and Inference in Econometrics
, 1993
"... The astonishing increase in computer performance over the past two decades has made it possible for economists to base many statistical inferences on simulated, or bootstrap, distributions rather than on distributions obtained from asymptotic theory. In this paper, I review some of the basic ideas o ..."
Abstract

Cited by 1151 (3 self)
 Add to MetaCart
The astonishing increase in computer performance over the past two decades has made it possible for economists to base many statistical inferences on simulated, or bootstrap, distributions rather than on distributions obtained from asymptotic theory. In this paper, I review some of the basic ideas of bootstrap inference. The paper discusses Monte Carlo tests, several types of bootstrap test, and bootstrap confidence intervals. Although bootstrapping often works well, it does not do so in every case.
Estimating the Support of a HighDimensional Distribution
, 1999
"... Suppose you are given some dataset drawn from an underlying probability distribution P and you want to estimate a "simple" subset S of input space such that the probability that a test point drawn from P lies outside of S is bounded by some a priori specified between 0 and 1. We propo ..."
Abstract

Cited by 766 (29 self)
 Add to MetaCart
Suppose you are given some dataset drawn from an underlying probability distribution P and you want to estimate a "simple" subset S of input space such that the probability that a test point drawn from P lies outside of S is bounded by some a priori specified between 0 and 1. We
Results 1  10
of
2,324,857