Results 1  10
of
2,028,500
Maximum likelihood from incomplete data via the EM algorithm
 JOURNAL OF THE ROYAL STATISTICAL SOCIETY, SERIES B
, 1977
"... A broadly applicable algorithm for computing maximum likelihood estimates from incomplete data is presented at various levels of generality. Theory showing the monotone behaviour of the likelihood and convergence of the algorithm is derived. Many examples are sketched, including missing value situat ..."
Abstract

Cited by 11807 (17 self)
 Add to MetaCart
situations, applications to grouped, censored or truncated data, finite mixture models, variance component estimation, hyperparameter estimation, iteratively reweighted least squares and factor analysis.
Regularization by truncated total least squares
 SIAM J. Sci. Comp
, 1997
"... Abstract. The total least squares (TLS) method is a successful method for noise reduction in linear least squares problems in a number of applications. The TLS method is suited to problems in which both the coefficient matrix and the righthand side are not precisely known. This paper focuses on the ..."
Abstract

Cited by 54 (4 self)
 Add to MetaCart
of the TLS matrix. We express our results in terms of the singular value decomposition (SVD) of the coefficient matrix rather than the augmented matrix. This leads to insight into the filtering properties of the truncated TLS method as compared to regularized least squares solutions. In addition, we propose
LeastSquares Policy Iteration
 JOURNAL OF MACHINE LEARNING RESEARCH
, 2003
"... We propose a new approach to reinforcement learning for control problems which combines valuefunction approximation with linear architectures and approximate policy iteration. This new approach ..."
Abstract

Cited by 461 (12 self)
 Add to MetaCart
We propose a new approach to reinforcement learning for control problems which combines valuefunction approximation with linear architectures and approximate policy iteration. This new approach
Least Median of Squares Regression
 JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION
, 1984
"... ..."
Least angle regression
 Ann. Statist
"... The purpose of model selection algorithms such as All Subsets, Forward Selection and Backward Elimination is to choose a linear model on the basis of the same set of data to which the model will be applied. Typically we have available a large collection of possible covariates from which we hope to s ..."
Abstract

Cited by 1308 (43 self)
 Add to MetaCart
implements the Lasso, an attractive version of ordinary least squares that constrains the sum of the absolute regression coefficients; the LARS modification calculates all possible Lasso estimates for a given problem, using an order of magnitude less computer time than previous methods. (2) A different LARS
Benchmarking Least Squares Support Vector Machine Classifiers
 NEURAL PROCESSING LETTERS
, 2001
"... In Support Vector Machines (SVMs), the solution of the classification problem is characterized by a (convex) quadratic programming (QP) problem. In a modified version of SVMs, called Least Squares SVM classifiers (LSSVMs), a least squares cost function is proposed so as to obtain a linear set of eq ..."
Abstract

Cited by 446 (46 self)
 Add to MetaCart
In Support Vector Machines (SVMs), the solution of the classification problem is characterized by a (convex) quadratic programming (QP) problem. In a modified version of SVMs, called Least Squares SVM classifiers (LSSVMs), a least squares cost function is proposed so as to obtain a linear set
LSQR: An Algorithm for Sparse Linear Equations and Sparse Least Squares
 ACM Trans. Math. Software
, 1982
"... An iterative method is given for solving Ax ~ffi b and minU Ax b 112, where the matrix A is large and sparse. The method is based on the bidiagonalization procedure of Golub and Kahan. It is analytically equivalent to the standard method of conjugate gradients, but possesses more favorable numerica ..."
Abstract

Cited by 649 (21 self)
 Add to MetaCart
gradient algorithms, indicating that I~QR is the most reliable algorithm when A is illconditioned. Categories and Subject Descriptors: G.1.2 [Numerical Analysis]: ApprorJmationleast squares approximation; G.1.3 [Numerical Analysis]: Numerical Linear Algebralinear systems (direct and
Direct least Square Fitting of Ellipses
, 1998
"... This work presents a new efficient method for fitting ellipses to scattered data. Previous algorithms either fitted general conics or were computationally expensive. By minimizing the algebraic distance subject to the constraint 4ac  b² = 1 the new method incorporates the ellipticity constraint ..."
Abstract

Cited by 421 (3 self)
 Add to MetaCart
This work presents a new efficient method for fitting ellipses to scattered data. Previous algorithms either fitted general conics or were computationally expensive. By minimizing the algebraic distance subject to the constraint 4ac  b² = 1 the new method incorporates the ellipticity constraint into the normalization factor. The proposed method combines several advantages: (i) It is ellipsespecific so that even bad data will always return an ellipse; (ii) It can be solved naturally by a generalized eigensystem and (iii) it is extremely robust, efficient and easy to implement.
Understanding Normal and Impaired Word Reading: Computational Principles in QuasiRegular Domains
 PSYCHOLOGICAL REVIEW
, 1996
"... We develop a connectionist approach to processing in quasiregular domains, as exemplified by English word reading. A consideration of the shortcomings of a previous implementation (Seidenberg & McClelland, 1989, Psych. Rev.) in reading nonwords leads to the development of orthographic and phono ..."
Abstract

Cited by 583 (94 self)
 Add to MetaCart
We develop a connectionist approach to processing in quasiregular domains, as exemplified by English word reading. A consideration of the shortcomings of a previous implementation (Seidenberg & McClelland, 1989, Psych. Rev.) in reading nonwords leads to the development of orthographic
Manifold regularization: A geometric framework for learning from labeled and unlabeled examples
 JOURNAL OF MACHINE LEARNING RESEARCH
, 2006
"... We propose a family of learning algorithms based on a new form of regularization that allows us to exploit the geometry of the marginal distribution. We focus on a semisupervised framework that incorporates labeled and unlabeled data in a generalpurpose learner. Some transductive graph learning al ..."
Abstract

Cited by 560 (15 self)
 Add to MetaCart
algorithms and standard methods including Support Vector Machines and Regularized Least Squares can be obtained as special cases. We utilize properties of Reproducing Kernel Hilbert spaces to prove new Representer theorems that provide theoretical basis for the algorithms. As a result (in contrast to purely
Results 1  10
of
2,028,500