Results 1  10
of
934,633
Estimating Wealth Effects without Expenditure Data— or Tears
 Policy Research Working Paper 1980, The World
, 1998
"... Abstract: We use the National Family Health Survey (NFHS) data collected in Indian states in 1992 and 1993 to estimate the relationship between household wealth and the probability a child (aged 6 to 14) is enrolled in school. A methodological difficulty to overcome is that the NFHS, modeled closely ..."
Abstract

Cited by 832 (16 self)
 Add to MetaCart
Abstract: We use the National Family Health Survey (NFHS) data collected in Indian states in 1992 and 1993 to estimate the relationship between household wealth and the probability a child (aged 6 to 14) is enrolled in school. A methodological difficulty to overcome is that the NFHS, modeled
Estimation and Inference in Econometrics
, 1993
"... The astonishing increase in computer performance over the past two decades has made it possible for economists to base many statistical inferences on simulated, or bootstrap, distributions rather than on distributions obtained from asymptotic theory. In this paper, I review some of the basic ideas o ..."
Abstract

Cited by 1151 (3 self)
 Add to MetaCart
The astonishing increase in computer performance over the past two decades has made it possible for economists to base many statistical inferences on simulated, or bootstrap, distributions rather than on distributions obtained from asymptotic theory. In this paper, I review some of the basic ideas
Estimating nonresponse bias in mail surveys
 Journal of Marketing Research
, 1977
"... Valid predictions for the direction of nonresponse bias were obtained from subjective estimates and extrapolations in an analysis of mail survey data from published studies. For estimates of the magnitude of bias, the use of extrapolations led to substantial improvements over a strategy of not using ..."
Abstract

Cited by 877 (5 self)
 Add to MetaCart
Valid predictions for the direction of nonresponse bias were obtained from subjective estimates and extrapolations in an analysis of mail survey data from published studies. For estimates of the magnitude of bias, the use of extrapolations led to substantial improvements over a strategy
Evaluating the Accuracy of SamplingBased Approaches to the Calculation of Posterior Moments
 IN BAYESIAN STATISTICS
, 1992
"... Data augmentation and Gibbs sampling are two closely related, samplingbased approaches to the calculation of posterior moments. The fact that each produces a sample whose constituents are neither independent nor identically distributed complicates the assessment of convergence and numerical accurac ..."
Abstract

Cited by 583 (14 self)
 Add to MetaCart
Data augmentation and Gibbs sampling are two closely related, samplingbased approaches to the calculation of posterior moments. The fact that each produces a sample whose constituents are neither independent nor identically distributed complicates the assessment of convergence and numerical
Estimating the Support of a HighDimensional Distribution
, 1999
"... Suppose you are given some dataset drawn from an underlying probability distribution P and you want to estimate a "simple" subset S of input space such that the probability that a test point drawn from P lies outside of S is bounded by some a priori specified between 0 and 1. We propo ..."
Abstract

Cited by 766 (29 self)
 Add to MetaCart
propose a method to approach this problem by trying to estimate a function f which is positive on S and negative on the complement. The functional form of f is given by a kernel expansion in terms of a potentially small subset of the training data; it is regularized by controlling the length
Reducing Multiclass to Binary: A Unifying Approach for Margin Classifiers
 JOURNAL OF MACHINE LEARNING RESEARCH
, 2000
"... We present a unifying framework for studying the solution of multiclass categorization problems by reducing them to multiple binary problems that are then solved using a marginbased binary learning algorithm. The proposed framework unifies some of the most popular approaches in which each class ..."
Abstract

Cited by 560 (20 self)
 Add to MetaCart
We present a unifying framework for studying the solution of multiclass categorization problems by reducing them to multiple binary problems that are then solved using a marginbased binary learning algorithm. The proposed framework unifies some of the most popular approaches in which each class
An evaluation of statistical approaches to text categorization
 Journal of Information Retrieval
, 1999
"... Abstract. This paper focuses on a comparative evaluation of a widerange of text categorization methods, including previously published results on the Reuters corpus and new results of additional experiments. A controlled study using three classifiers, kNN, LLSF and WORD, was conducted to examine th ..."
Abstract

Cited by 664 (23 self)
 Add to MetaCart
were used as baselines, since they were evaluated on all versions of Reuters that exclude the unlabelled documents. As a global observation, kNN, LLSF and a neural network method had the best performance; except for a Naive Bayes approach, the other learning algorithms also performed relatively well.
Nonparametric estimation of average treatment effects under exogeneity: a review
 REVIEW OF ECONOMICS AND STATISTICS
, 2004
"... Recently there has been a surge in econometric work focusing on estimating average treatment effects under various sets of assumptions. One strand of this literature has developed methods for estimating average treatment effects for a binary treatment under assumptions variously described as exogen ..."
Abstract

Cited by 597 (26 self)
 Add to MetaCart
considered estimation and inference for average treatment effects under weaker assumptions than typical of the earlier literature by avoiding distributional and functionalform assumptions. Various methods of semiparametric estimation have been proposed, including estimating the unknown regression functions
Results 1  10
of
934,633