Results 1 - 10
of
552,655
LSQR: An Algorithm for Sparse Linear Equations and Sparse Least Squares
- ACM Trans. Math. Software
, 1982
"... An iterative method is given for solving Ax ~ffi b and minU Ax- b 112, where the matrix A is large and sparse. The method is based on the bidiagonalization procedure of Golub and Kahan. It is analytically equivalent to the standard method of conjugate gradients, but possesses more favorable numerica ..."
Abstract
-
Cited by 649 (21 self)
- Add to MetaCart
-gradient algorithms, indicating that I~QR is the most reliable algorithm when A is ill-conditioned. Categories and Subject Descriptors: G.1.2 [Numerical Analysis]: ApprorJmation--least squares approximation; G.1.3 [Numerical Analysis]: Numerical Linear Algebra--linear systems (direct and
A computational approach to edge detection
- IEEE Transactions on Pattern Analysis and Machine Intelligence
, 1986
"... Abstract-This paper describes a computational approach to edge detection. The success of the approach depends on the definition of a comprehensive set of goals for the computation of edge points. These goals must be precise enough to delimit the desired behavior of the detector while making minimal ..."
Abstract
-
Cited by 4621 (0 self)
- Add to MetaCart
Abstract-This paper describes a computational approach to edge detection. The success of the approach depends on the definition of a comprehensive set of goals for the computation of edge points. These goals must be precise enough to delimit the desired behavior of the detector while making minimal
Formalising trust as a computational concept
, 1994
"... Trust is a judgement of unquestionable utility — as humans we use it every day of our lives. However, trust has suffered from an imperfect understanding, a plethora of definitions, and informal use in the literature and in everyday life. It is common to say “I trust you, ” but what does that mean? T ..."
Abstract
-
Cited by 518 (5 self)
- Add to MetaCart
Trust is a judgement of unquestionable utility — as humans we use it every day of our lives. However, trust has suffered from an imperfect understanding, a plethora of definitions, and informal use in the literature and in everyday life. It is common to say “I trust you, ” but what does that mean? This thesis provides a clarification of trust. We present a formalism for trust which provides us with a tool for precise discussion. The formalism is implementable: it can be embedded in an artificial agent, enabling the agent to make trust-based decisions. Its applicability in the domain of Distributed Artificial Intelligence (DAI) is raised. The thesis presents a testbed populated by simple trusting agents which substantiates the utility of the formalism. The formalism provides a step in the direction of a proper understanding and definition of human trust. A contribution of the thesis is its detailed exploration of the possibilities of future work in the area. Summary 1. Overview This thesis presents an overview of trust as a social phenomenon and discusses it formally. It argues that trust is: • A means for understanding and adapting to the complexity of the environment. • A means of providing added robustness to independent agents. • A useful judgement in the light of experience of the behaviour of others. • Applicable to inanimate others. The thesis argues these points from the point of view of artificial agents. Trust in an artificial agent is a means of providing an additional tool for the consideration of other agents and the environment in which it exists. Moreover, a formalisation of trust enables the embedding of the concept into an artificial agent. This has been done, and is documented in the thesis. 2. Exposition There are places in the thesis where it is necessary to give a broad outline before going deeper. In consequence it may seem that the subject is not receiving a thorough treatment, or that too much is being discussed at one time! (This is particularly apparent in the first and second chapters.) To present a thorough understanding of trust, we have proceeded breadth first in the introductory chapters. Chapter 3 expands, depth first, presenting critical views of established researchers.
Simulating Physics with Computers
- SIAM Journal on Computing
, 1982
"... A digital computer is generally believed to be an efficient universal computing device; that is, it is believed able to simulate any physical computing device with an increase in computation time of at most a polynomial factor. This may not be true when quantum mechanics is taken into consideration. ..."
Abstract
-
Cited by 601 (1 self)
- Add to MetaCart
A digital computer is generally believed to be an efficient universal computing device; that is, it is believed able to simulate any physical computing device with an increase in computation time of at most a polynomial factor. This may not be true when quantum mechanics is taken into consideration
A survey of general-purpose computation on graphics hardware
, 2007
"... The rapid increase in the performance of graphics hardware, coupled with recent improvements in its programmability, have made graphics hardware acompelling platform for computationally demanding tasks in awide variety of application domains. In this report, we describe, summarize, and analyze the l ..."
Abstract
-
Cited by 545 (18 self)
- Add to MetaCart
The rapid increase in the performance of graphics hardware, coupled with recent improvements in its programmability, have made graphics hardware acompelling platform for computationally demanding tasks in awide variety of application domains. In this report, we describe, summarize, and analyze
LogP: Towards a Realistic Model of Parallel Computation
, 1993
"... A vast body of theoretical research has focused either on overly simplistic models of parallel computation, notably the PRAM, or overly specific models that have few representatives in the real world. Both kinds of models encourage exploitation of formal loopholes, rather than rewarding developme ..."
Abstract
-
Cited by 562 (15 self)
- Add to MetaCart
A vast body of theoretical research has focused either on overly simplistic models of parallel computation, notably the PRAM, or overly specific models that have few representatives in the real world. Both kinds of models encourage exploitation of formal loopholes, rather than rewarding
Benchmarking Least Squares Support Vector Machine Classifiers
- NEURAL PROCESSING LETTERS
, 2001
"... In Support Vector Machines (SVMs), the solution of the classification problem is characterized by a (convex) quadratic programming (QP) problem. In a modified version of SVMs, called Least Squares SVM classifiers (LS-SVMs), a least squares cost function is proposed so as to obtain a linear set of eq ..."
Abstract
-
Cited by 446 (46 self)
- Add to MetaCart
In Support Vector Machines (SVMs), the solution of the classification problem is characterized by a (convex) quadratic programming (QP) problem. In a modified version of SVMs, called Least Squares SVM classifiers (LS-SVMs), a least squares cost function is proposed so as to obtain a linear set
Algorithms for Quantum Computation: Discrete Logarithms and Factoring
, 1994
"... A computer is generally considered to be a universal computational device; i.e., it is believed able to simulate any physical computational device with a increase in computation time of at most a polynomial factor. It is not clear whether this is still true when quantum mechanics is taken into consi ..."
Abstract
-
Cited by 1103 (7 self)
- Add to MetaCart
A computer is generally considered to be a universal computational device; i.e., it is believed able to simulate any physical computational device with a increase in computation time of at most a polynomial factor. It is not clear whether this is still true when quantum mechanics is taken
Nested Transactions: An Approach to Reliable Distributed Computing
, 1981
"... Distributed computing systems are being built and used more and more frequently. This distributod computing revolution makes the reliability of distributed systems an important concern. It is fairly well-understood how to connect hardware so that most components can continue to work when others are ..."
Abstract
-
Cited by 527 (1 self)
- Add to MetaCart
Distributed computing systems are being built and used more and more frequently. This distributod computing revolution makes the reliability of distributed systems an important concern. It is fairly well-understood how to connect hardware so that most components can continue to work when others
Decision-Theoretic Planning: Structural Assumptions and Computational Leverage
- JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH
, 1999
"... Planning under uncertainty is a central problem in the study of automated sequential decision making, and has been addressed by researchers in many different fields, including AI planning, decision analysis, operations research, control theory and economics. While the assumptions and perspectives ..."
Abstract
-
Cited by 510 (4 self)
- Add to MetaCart
Planning under uncertainty is a central problem in the study of automated sequential decision making, and has been addressed by researchers in many different fields, including AI planning, decision analysis, operations research, control theory and economics. While the assumptions and perspectives adopted in these areas often differ in substantial ways, many planning problems of interest to researchers in these fields can be modeled as Markov decision processes (MDPs) and analyzed using the techniques of decision theory. This paper presents an overview and synthesis of MDP-related methods, showing how they provide a unifying framework for modeling many classes of planning problems studied in AI. It also describes structural properties of MDPs that, when exhibited by particular classes of problems, can be exploited in the construction of optimal or approximately optimal policies or plans. Planning problems commonly possess structure in the reward and value functions used to de...
Results 1 - 10
of
552,655