Results 1  10
of
280,180
Factoring polynomials with rational coefficients
 MATH. ANN
, 1982
"... In this paper we present a polynomialtime algorithm to solve the following problem: given a nonzero polynomial fe Q[X] in one variable with rational coefficients, find the decomposition of f into irreducible factors in Q[X]. It is well known that this is equivalent to factoring primitive polynomia ..."
Abstract

Cited by 982 (11 self)
 Add to MetaCart
In this paper we present a polynomialtime algorithm to solve the following problem: given a nonzero polynomial fe Q[X] in one variable with rational coefficients, find the decomposition of f into irreducible factors in Q[X]. It is well known that this is equivalent to factoring primitive
Algorithms for Quantum Computation: Discrete Logarithms and Factoring
, 1994
"... A computer is generally considered to be a universal computational device; i.e., it is believed able to simulate any physical computational device with a increase in computation time of at most a polynomial factor. It is not clear whether this is still true when quantum mechanics is taken into consi ..."
Abstract

Cited by 1103 (7 self)
 Add to MetaCart
A computer is generally considered to be a universal computational device; i.e., it is believed able to simulate any physical computational device with a increase in computation time of at most a polynomial factor. It is not clear whether this is still true when quantum mechanics is taken
Simulating Physics with Computers
 SIAM Journal on Computing
, 1982
"... A digital computer is generally believed to be an efficient universal computing device; that is, it is believed able to simulate any physical computing device with an increase in computation time of at most a polynomial factor. This may not be true when quantum mechanics is taken into consideration. ..."
Abstract

Cited by 601 (1 self)
 Add to MetaCart
A digital computer is generally believed to be an efficient universal computing device; that is, it is believed able to simulate any physical computing device with an increase in computation time of at most a polynomial factor. This may not be true when quantum mechanics is taken into consideration
A Pairwise Key PreDistribution Scheme for Wireless Sensor Networks
, 2003
"... this paper, we provide a framework in which to study the security of key predistribution schemes, propose a new key predistribution scheme which substantially improves the resilience of the network compared to previous schemes, and give an indepth analysis of our scheme in terms of network resili ..."
Abstract

Cited by 554 (18 self)
 Add to MetaCart
resilience and associated overhead. Our scheme exhibits a nice threshold property: when the number of compromised nodes is less than the threshold, the probability that communications between any additional nodes are compromised is close to zero. This desirable property lowers the initial payoff of smaller
Random Oracles are Practical: A Paradigm for Designing Efficient Protocols
, 1995
"... We argue that the random oracle model  where all parties have access to a public random oracle  provides a bridge between cryptographic theory and cryptographic practice. In the paradigm we suggest, a practical protocol P is produced by first devising and proving correct a protocol P R for the ..."
Abstract

Cited by 1643 (75 self)
 Add to MetaCart
We argue that the random oracle model  where all parties have access to a public random oracle  provides a bridge between cryptographic theory and cryptographic practice. In the paradigm we suggest, a practical protocol P is produced by first devising and proving correct a protocol P R
Near Optimal Signal Recovery From Random Projections: Universal Encoding Strategies?
, 2004
"... Suppose we are given a vector f in RN. How many linear measurements do we need to make about f to be able to recover f to within precision ɛ in the Euclidean (ℓ2) metric? Or more exactly, suppose we are interested in a class F of such objects— discrete digital signals, images, etc; how many linear m ..."
Abstract

Cited by 1513 (20 self)
 Add to MetaCart
Suppose we are given a vector f in RN. How many linear measurements do we need to make about f to be able to recover f to within precision ɛ in the Euclidean (ℓ2) metric? Or more exactly, suppose we are interested in a class F of such objects— discrete digital signals, images, etc; how many linear
Just Relax: Convex Programming Methods for Identifying Sparse Signals in Noise
, 2006
"... This paper studies a difficult and fundamental problem that arises throughout electrical engineering, applied mathematics, and statistics. Suppose that one forms a short linear combination of elementary signals drawn from a large, fixed collection. Given an observation of the linear combination that ..."
Abstract

Cited by 496 (2 self)
 Add to MetaCart
. This paper studies a method called convex relaxation, which attempts to recover the ideal sparse signal by solving a convex program. This approach is powerful because the optimization can be completed in polynomial time with standard scientific software. The paper provides general conditions which ensure
Edge Detection
, 1985
"... For both biological systems and machines, vision begins with a large and unwieldy array of measurements of the amount of light reflected from surfaces in the environment. The goal of vision is to recover physical properties of objects in the scene, such as the location of object boundaries and the s ..."
Abstract

Cited by 1277 (1 self)
 Add to MetaCart
For both biological systems and machines, vision begins with a large and unwieldy array of measurements of the amount of light reflected from surfaces in the environment. The goal of vision is to recover physical properties of objects in the scene, such as the location of object boundaries
The selfduality equations on a Riemann surface
 Proc. Lond. Math. Soc., III. Ser
, 1987
"... In this paper we shall study a special class of solutions of the selfdual YangMills equations. The original selfduality equations which arose in mathematical physics were defined on Euclidean 4space. The physically relevant solutions were the ones with finite action—the socalled 'instanton ..."
Abstract

Cited by 524 (6 self)
 Add to MetaCart
In this paper we shall study a special class of solutions of the selfdual YangMills equations. The original selfduality equations which arose in mathematical physics were defined on Euclidean 4space. The physically relevant solutions were the ones with finite action—the socalled &apos
Bundle Adjustment  A Modern Synthesis
 VISION ALGORITHMS: THEORY AND PRACTICE, LNCS
, 2000
"... This paper is a survey of the theory and methods of photogrammetric bundle adjustment, aimed at potential implementors in the computer vision community. Bundle adjustment is the problem of refining a visual reconstruction to produce jointly optimal structure and viewing parameter estimates. Topics c ..."
Abstract

Cited by 555 (12 self)
 Add to MetaCart
This paper is a survey of the theory and methods of photogrammetric bundle adjustment, aimed at potential implementors in the computer vision community. Bundle adjustment is the problem of refining a visual reconstruction to produce jointly optimal structure and viewing parameter estimates. Topics
Results 1  10
of
280,180