Results 1  10
of
557,020
Least Median of Squares Regression
 JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION
, 1984
"... ..."
Locally weighted learning
 ARTIFICIAL INTELLIGENCE REVIEW
, 1997
"... This paper surveys locally weighted learning, a form of lazy learning and memorybased learning, and focuses on locally weighted linear regression. The survey discusses distance functions, smoothing parameters, weighting functions, local model structures, regularization of the estimates and bias, ass ..."
Abstract

Cited by 594 (53 self)
 Add to MetaCart
This paper surveys locally weighted learning, a form of lazy learning and memorybased learning, and focuses on locally weighted linear regression. The survey discusses distance functions, smoothing parameters, weighting functions, local model structures, regularization of the estimates and bias
Representing Moving Images with Layers
, 1994
"... We describe a system for representing moving images with sets of overlapping layers. Each layer contains an intensity map that defines the additive values of each pixel, along with an alpha map that serves as a mask indicating the transparency. The layers are ordered in depth and they occlude each o ..."
Abstract

Cited by 542 (11 self)
 Add to MetaCart
We describe a system for representing moving images with sets of overlapping layers. Each layer contains an intensity map that defines the additive values of each pixel, along with an alpha map that serves as a mask indicating the transparency. The layers are ordered in depth and they occlude each
Precomputed Radiance Transfer for RealTime Rendering in Dynamic, LowFrequency Lighting Environments
 ACM Transactions on Graphics
, 2002
"... We present a new, realtime method for rendering diffuse and glossy objects in lowfrequency lighting environments that captures soft shadows, interreflections, and caustics. As a preprocess, a novel global transport simulator creates functions over the object's surface representing transfer of ..."
Abstract

Cited by 472 (28 self)
 Add to MetaCart
and caustics from rigidly moving objects to be cast onto arbitrary, dynamic receivers. We demonstrate realtime global lighting effects with this approach.
Benchmarking Least Squares Support Vector Machine Classifiers
 NEURAL PROCESSING LETTERS
, 2001
"... In Support Vector Machines (SVMs), the solution of the classification problem is characterized by a (convex) quadratic programming (QP) problem. In a modified version of SVMs, called Least Squares SVM classifiers (LSSVMs), a least squares cost function is proposed so as to obtain a linear set of eq ..."
Abstract

Cited by 446 (46 self)
 Add to MetaCart
In Support Vector Machines (SVMs), the solution of the classification problem is characterized by a (convex) quadratic programming (QP) problem. In a modified version of SVMs, called Least Squares SVM classifiers (LSSVMs), a least squares cost function is proposed so as to obtain a linear set
Image denoising using a scale mixture of Gaussians in the wavelet domain
 IEEE TRANS IMAGE PROCESSING
, 2003
"... We describe a method for removing noise from digital images, based on a statistical model of the coefficients of an overcomplete multiscale oriented basis. Neighborhoods of coefficients at adjacent positions and scales are modeled as the product of two independent random variables: a Gaussian vecto ..."
Abstract

Cited by 514 (17 self)
 Add to MetaCart
vector and a hidden positive scalar multiplier. The latter modulates the local variance of the coefficients in the neighborhood, and is thus able to account for the empirically observed correlation between the coefficient amplitudes. Under this model, the Bayesian least squares estimate of each
Image deformation using moving least squares
 ACM Trans. on Graph
, 2006
"... Figure 1: Deformation using Moving Least Squares. Original image with control points shown in blue (a). Moving Least Squares deformations using affine transformations (b), similarity transformations (c) and rigid transformations (d). We provide an image deformation method based on Moving Least Squar ..."
Abstract

Cited by 132 (2 self)
 Add to MetaCart
Figure 1: Deformation using Moving Least Squares. Original image with control points shown in blue (a). Moving Least Squares deformations using affine transformations (b), similarity transformations (c) and rigid transformations (d). We provide an image deformation method based on Moving Least
View Interpolation for Image Synthesis
"... Imagespace simplifications have been used to accelerate the calculation of computer graphic images since the dawn of visual simulation. Texture mapping has been used to provide a means by which images may themselves be used as display primitives. The work reported by this paper endeavors to carry t ..."
Abstract

Cited by 605 (0 self)
 Add to MetaCart
of the scene may be replaced with images. Second, the image synthesis time is independent of the scene complexity. The correspondence between images, required for the morphing method, can be predetermined automatically using the range data associated with the images. The method is further accelerated by a
A Survey of Medical Image Registration
, 1998
"... The purpose of this chapter is to present a survey of recent publications concerning medical image registration techniques. These publications will be classified according to a model based on nine salient criteria, the main dichotomy of which is extrinsic versus intrinsic methods The statistics of t ..."
Abstract

Cited by 540 (5 self)
 Add to MetaCart
of the classification show definite trends in the evolving registration techniques, which will be discussed. At this moment, the bulk of interesting intrinsic methods is either based on segmented points or surfaces, or on techniques endeavoring to use the full information content of the images involved. Keywords
Image registration methods: a survey
 IMAGE AND VISION COMPUTING
, 2003
"... This paper aims to present a review of recent as well as classic image registration methods. Image registration is the process of overlaying images (two or more) of the same scene taken at different times, from different viewpoints, and/or by different sensors. The registration geometrically align t ..."
Abstract

Cited by 734 (9 self)
 Add to MetaCart
This paper aims to present a review of recent as well as classic image registration methods. Image registration is the process of overlaying images (two or more) of the same scene taken at different times, from different viewpoints, and/or by different sensors. The registration geometrically align
Results 1  10
of
557,020