Results 1  10
of
423,991
Randomness and lowness notions via open covers
 Ann. Pure Appl. Logic
"... One of the main lines of research in the field of algorithmic randomness is that of lowness for randomness notions. Given a randomness notion R, we ask for which sequences A does relativization to A leave R unchanged (i.e., RA = R)? This question extends to pairs of randomness notions: given two ran ..."
Abstract

Cited by 7 (2 self)
 Add to MetaCart
. In this paper, we give a series of results showing that a wide variety of lowness notions can be expressed in a similar way, i.e., via the ability to cover open sets of a certain type by open sets of some other type. This provides a unified framework that clarifies the study of lowness for randomness notions
A Threshold of ln n for Approximating Set Cover
 JOURNAL OF THE ACM
, 1998
"... Given a collection F of subsets of S = f1; : : : ; ng, set cover is the problem of selecting as few as possible subsets from F such that their union covers S, and max kcover is the problem of selecting k subsets from F such that their union has maximum cardinality. Both these problems are NPhar ..."
Abstract

Cited by 778 (5 self)
 Add to MetaCart
hard. We prove that (1 \Gamma o(1)) ln n is a threshold below which set cover cannot be approximated efficiently, unless NP has slightly superpolynomial time algorithms. This closes the gap (up to low order terms) between the ratio of approximation achievable by the greedy algorithm (which is (1 \Gamma
Random key predistribution schemes for sensor networks
 IN PROCEEDINGS OF THE 2003 IEEE SYMPOSIUM ON SECURITY AND PRIVACY
, 2003
"... Key establishment in sensor networks is a challenging problem because asymmetric key cryptosystems are unsuitable for use in resource constrained sensor nodes, and also because the nodes could be physically compromised by an adversary. We present three new mechanisms for key establishment using the ..."
Abstract

Cited by 813 (14 self)
 Add to MetaCart
the framework of predistributing a random set of keys to each node. First, in the qcomposite keys scheme, we trade off the unlikeliness of a largescale network attack in order to significantly strengthen random key predistributionâ€™s strength against smallerscale attacks. Second, in the multipath
DART: Directed automated random testing
 In Programming Language Design and Implementation (PLDI
, 2005
"... We present a new tool, named DART, for automatically testing software that combines three main techniques: (1) automated extraction of the interface of a program with its external environment using static sourcecode parsing; (2) automatic generation of a test driver for this interface that performs ..."
Abstract

Cited by 823 (41 self)
 Add to MetaCart
that performs random testing to simulate the most general environment the program can operate in; and (3) dynamic analysis of how the program behaves under random testing and automatic generation of new test inputs to direct systematically the execution along alternative program paths. Together, these three
Solving multiclass learning problems via errorcorrecting output codes
 JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH
, 1995
"... Multiclass learning problems involve nding a de nition for an unknown function f(x) whose range is a discrete set containing k>2values (i.e., k \classes"). The de nition is acquired by studying collections of training examples of the form hx i;f(x i)i. Existing approaches to multiclass l ..."
Abstract

Cited by 730 (8 self)
 Add to MetaCart
Multiclass learning problems involve nding a de nition for an unknown function f(x) whose range is a discrete set containing k>2values (i.e., k \classes"). The de nition is acquired by studying collections of training examples of the form hx i;f(x i)i. Existing approaches to multiclass learning problems include direct application of multiclass algorithms such as the decisiontree algorithms C4.5 and CART, application of binary concept learning algorithms to learn individual binary functions for each of the k classes, and application of binary concept learning algorithms with distributed output representations. This paper compares these three approaches to a new technique in which errorcorrecting codes are employed as a distributed output representation. We show that these output representations improve the generalization performance of both C4.5 and backpropagation on a wide range of multiclass learning tasks. We also demonstrate that this approach is robust with respect to changes in the size of the training sample, the assignment of distributed representations to particular classes, and the application of over tting avoidance techniques such as decisiontree pruning. Finally,we show thatlike the other methodsthe errorcorrecting code technique can provide reliable class probability estimates. Taken together, these results demonstrate that errorcorrecting output codes provide a generalpurpose method for improving the performance of inductive learning programs on multiclass problems.
Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation
 J. Cell
, 1992
"... Abstract. Programmed cell death (PCD) plays a key role in developmental biology and in maintenance of the steady state in continuously renewing tissues. Currently, its existence is inferred mainly from gel electrophoresis of a pooled DNA extract as PCD was shown to be associated with DNA fragmentati ..."
Abstract

Cited by 656 (0 self)
 Add to MetaCart
Abstract. Programmed cell death (PCD) plays a key role in developmental biology and in maintenance of the steady state in continuously renewing tissues. Currently, its existence is inferred mainly from gel electrophoresis of a pooled DNA extract as PCD was shown to be associated with DNA fragmentation. Based on this observation, we describe here the development of a method for the in situ visualization of PCD at the singlecell level, while preserving tissue architecture. Conventional histological sections, pretreated with protease, were nick end labeled with biotinylated poly dU, introduced by terminal deoxyp iaOGrtAMMED cell death 0~D) 1 is a selective process of physiological cell deletion (Wyllie, 1981; Umansky,
Learning the Kernel Matrix with SemiDefinite Programming
, 2002
"... Kernelbased learning algorithms work by embedding the data into a Euclidean space, and then searching for linear relations among the embedded data points. The embedding is performed implicitly, by specifying the inner products between each pair of points in the embedding space. This information ..."
Abstract

Cited by 780 (22 self)
 Add to MetaCart
is contained in the socalled kernel matrix, a symmetric and positive definite matrix that encodes the relative positions of all points. Specifying this matrix amounts to specifying the geometry of the embedding space and inducing a notion of similarity in the input spaceclassical model selection
Planning Algorithms
, 2004
"... This book presents a unified treatment of many different kinds of planning algorithms. The subject lies at the crossroads between robotics, control theory, artificial intelligence, algorithms, and computer graphics. The particular subjects covered include motion planning, discrete planning, planning ..."
Abstract

Cited by 1108 (51 self)
 Add to MetaCart
This book presents a unified treatment of many different kinds of planning algorithms. The subject lies at the crossroads between robotics, control theory, artificial intelligence, algorithms, and computer graphics. The particular subjects covered include motion planning, discrete planning
Results 1  10
of
423,991