Results 1  10
of
30,401
Books in graphs
, 2008
"... A set of q triangles sharing a common edge is called a book of size q. We write β (n, m) for the the maximal q such that every graph G (n, m) contains a book of size q. In this note 1) we compute β ( n, cn 2) for infinitely many values of c with 1/4 < c < 1/3, 2) we show that if m ≥ (1/4 − α) ..."
Abstract

Cited by 2380 (22 self)
 Add to MetaCart
A set of q triangles sharing a common edge is called a book of size q. We write β (n, m) for the the maximal q such that every graph G (n, m) contains a book of size q. In this note 1) we compute β ( n, cn 2) for infinitely many values of c with 1/4 < c < 1/3, 2) we show that if m ≥ (1/4 − α
The Ramsey number of dense graphs
"... The Ramsey number r(H) of a graph H is the smallest number n such that, in any twocolouring of the edges of Kn, there is a monochromatic copy of H. We study the Ramsey number of graphs H with t vertices and density ρ, proving that r(H) ≤ 2 c √ ρ log(2/ρ)t. We also investigate some related problems ..."
Abstract

Cited by 4 (4 self)
 Add to MetaCart
The Ramsey number r(H) of a graph H is the smallest number n such that, in any twocolouring of the edges of Kn, there is a monochromatic copy of H. We study the Ramsey number of graphs H with t vertices and density ρ, proving that r(H) ≤ 2 c √ ρ log(2/ρ)t. We also investigate some related
Community detection in graphs
, 2009
"... The modern science of networks has brought significant advances to our understanding of complex systems. One of the most relevant features of graphs representing real systems is community structure, or clustering, i. e. the organization of vertices in clusters, with many edges joining vertices of th ..."
Abstract

Cited by 801 (1 self)
 Add to MetaCart
The modern science of networks has brought significant advances to our understanding of complex systems. One of the most relevant features of graphs representing real systems is community structure, or clustering, i. e. the organization of vertices in clusters, with many edges joining vertices
Factor Graphs and the SumProduct Algorithm
 IEEE TRANSACTIONS ON INFORMATION THEORY
, 1998
"... A factor graph is a bipartite graph that expresses how a "global" function of many variables factors into a product of "local" functions. Factor graphs subsume many other graphical models including Bayesian networks, Markov random fields, and Tanner graphs. Following one simple c ..."
Abstract

Cited by 1787 (72 self)
 Add to MetaCart
A factor graph is a bipartite graph that expresses how a "global" function of many variables factors into a product of "local" functions. Factor graphs subsume many other graphical models including Bayesian networks, Markov random fields, and Tanner graphs. Following one simple
A fast and high quality multilevel scheme for partitioning irregular graphs
 SIAM JOURNAL ON SCIENTIFIC COMPUTING
, 1998
"... Recently, a number of researchers have investigated a class of graph partitioning algorithms that reduce the size of the graph by collapsing vertices and edges, partition the smaller graph, and then uncoarsen it to construct a partition for the original graph [Bui and Jones, Proc. ..."
Abstract

Cited by 1173 (16 self)
 Add to MetaCart
Recently, a number of researchers have investigated a class of graph partitioning algorithms that reduce the size of the graph by collapsing vertices and edges, partition the smaller graph, and then uncoarsen it to construct a partition for the original graph [Bui and Jones, Proc.
Graphs over Time: Densification Laws, Shrinking Diameters and Possible Explanations
, 2005
"... How do real graphs evolve over time? What are “normal” growth patterns in social, technological, and information networks? Many studies have discovered patterns in static graphs, identifying properties in a single snapshot of a large network, or in a very small number of snapshots; these include hea ..."
Abstract

Cited by 534 (48 self)
 Add to MetaCart
How do real graphs evolve over time? What are “normal” growth patterns in social, technological, and information networks? Many studies have discovered patterns in static graphs, identifying properties in a single snapshot of a large network, or in a very small number of snapshots; these include
Bipartite Ramsey Numbers and Zarankiewicz Numbers
"... The Zarankiewicz number z(s, m) is the maximum number of edges in a subgraph of K(s, s) that does not contain K(m, m) as a subgraph. The bipartite Ramsey number b(m, n) is the least positive integer b such that if the edges of K(b, b) are coloured with red and blue, then there always exists a blue K ..."
Abstract

Cited by 3 (0 self)
 Add to MetaCart
The Zarankiewicz number z(s, m) is the maximum number of edges in a subgraph of K(s, s) that does not contain K(m, m) as a subgraph. The bipartite Ramsey number b(m, n) is the least positive integer b such that if the edges of K(b, b) are coloured with red and blue, then there always exists a blue
Finding community structure in networks using the eigenvectors of matrices
, 2006
"... We consider the problem of detecting communities or modules in networks, groups of vertices with a higherthanaverage density of edges connecting them. Previous work indicates that a robust approach to this problem is the maximization of the benefit function known as “modularity ” over possible div ..."
Abstract

Cited by 500 (0 self)
 Add to MetaCart
number of possible algorithms for detecting community structure, as well as several other results, including a spectral measure of bipartite structure in networks and a new centrality measure that identifies those vertices that occupy central positions within the communities to which they belong
A Digital Fountain Approach to Reliable Distribution of Bulk Data
 IN PROC. OF ACM SIGCOMM ’98
, 1998
"... The proliferation of applications that must reliably distribute bulk data to a large number of autonomous clients motivates the design of new multicast and broadcast prot.ocols. We describe an ideal, fully scalable protocol for these applications that we call a digital fountain. A digital fountain a ..."
Abstract

Cited by 498 (20 self)
 Add to MetaCart
The proliferation of applications that must reliably distribute bulk data to a large number of autonomous clients motivates the design of new multicast and broadcast prot.ocols. We describe an ideal, fully scalable protocol for these applications that we call a digital fountain. A digital fountain
Results 1  10
of
30,401