Results 1  10
of
32,057
The PASCAL Visual Object Classes (VOC) challenge
, 2009
"... ... is a benchmark in visual object category recognition and detection, providing the vision and machine learning communities with a standard dataset of images and annotation, and standard evaluation procedures. Organised annually from 2005 to present, the challenge and its associated dataset has be ..."
Abstract

Cited by 624 (20 self)
 Add to MetaCart
... is a benchmark in visual object category recognition and detection, providing the vision and machine learning communities with a standard dataset of images and annotation, and standard evaluation procedures. Organised annually from 2005 to present, the challenge and its associated dataset has become accepted as the benchmark for object detection. This paper describes the dataset and evaluation procedure. We review the stateoftheart in evaluated methods for both classification and detection, analyse whether the methods are statistically different, what they are learning from the images (e.g. the object or its context), and what the methods find easy or confuse. The paper concludes with lessons learnt in the three year history of the challenge, and proposes directions for future improvement and extension.
Graphical models, exponential families, and variational inference
, 2008
"... The formalism of probabilistic graphical models provides a unifying framework for capturing complex dependencies among random variables, and building largescale multivariate statistical models. Graphical models have become a focus of research in many statistical, computational and mathematical fiel ..."
Abstract

Cited by 800 (26 self)
 Add to MetaCart
The formalism of probabilistic graphical models provides a unifying framework for capturing complex dependencies among random variables, and building largescale multivariate statistical models. Graphical models have become a focus of research in many statistical, computational and mathematical fields, including bioinformatics, communication theory, statistical physics, combinatorial optimization, signal and image processing, information retrieval and statistical machine learning. Many problems that arise in specific instances — including the key problems of computing marginals and modes of probability distributions — are best studied in the general setting. Working with exponential family representations, and exploiting the conjugate duality between the cumulant function and the entropy for exponential families, we develop general variational representations of the problems of computing likelihoods, marginal probabilities and most probable configurations. We describe how a wide varietyof algorithms — among them sumproduct, cluster variational methods, expectationpropagation, mean field methods, maxproduct and linear programming relaxation, as well as conic programming relaxations — can all be understood in terms of exact or approximate forms of these variational representations. The variational approach provides a complementary alternative to Markov chain Monte Carlo as a general source of approximation methods for inference in largescale statistical models.
A land use and land cover classification system for use with remote sensor data
 USGS Prof. Pap
, 1976
"... A revision of the land use classification system as presented in U.S. Geological Survey Circular 671 ..."
Abstract

Cited by 476 (0 self)
 Add to MetaCart
A revision of the land use classification system as presented in U.S. Geological Survey Circular 671
The DLV System for Knowledge Representation and Reasoning
 ACM Transactions on Computational Logic
, 2002
"... Disjunctive Logic Programming (DLP) is an advanced formalism for knowledge representation and reasoning, which is very expressive in a precise mathematical sense: it allows to express every property of finite structures that is decidable in the complexity class ΣP 2 (NPNP). Thus, under widely believ ..."
Abstract

Cited by 455 (100 self)
 Add to MetaCart
Disjunctive Logic Programming (DLP) is an advanced formalism for knowledge representation and reasoning, which is very expressive in a precise mathematical sense: it allows to express every property of finite structures that is decidable in the complexity class ΣP 2 (NPNP). Thus, under widely believed assumptions, DLP is strictly more expressive than normal (disjunctionfree) logic programming, whose expressiveness is limited to properties decidable in NP. Importantly, apart from enlarging the class of applications which can be encoded in the language, disjunction often allows for representing problems of lower complexity in a simpler and more natural fashion. This paper presents the DLV system, which is widely considered the stateoftheart implementation of disjunctive logic programming, and addresses several aspects. As for problem solving, we provide a formal definition of its kernel language, functionfree disjunctive logic programs (also known as disjunctive datalog), extended by weak constraints, which are a powerful tool to express optimization problems. We then illustrate the usage of DLV as a tool for knowledge representation and reasoning, describing a new declarative programming methodology which allows one to encode complex problems (up to ∆P 3complete problems) in a declarative fashion. On the foundational side, we provide a detailed analysis of the computational complexity of the language of
From Sparse Solutions of Systems of Equations to Sparse Modeling of Signals and Images
, 2007
"... A fullrank matrix A ∈ IR n×m with n < m generates an underdetermined system of linear equations Ax = b having infinitely many solutions. Suppose we seek the sparsest solution, i.e., the one with the fewest nonzero entries: can it ever be unique? If so, when? As optimization of sparsity is combin ..."
Abstract

Cited by 423 (37 self)
 Add to MetaCart
A fullrank matrix A ∈ IR n×m with n < m generates an underdetermined system of linear equations Ax = b having infinitely many solutions. Suppose we seek the sparsest solution, i.e., the one with the fewest nonzero entries: can it ever be unique? If so, when? As optimization of sparsity is combinatorial in nature, are there efficient methods for finding the sparsest solution? These questions have been answered positively and constructively in recent years, exposing a wide variety of surprising phenomena; in particular, the existence of easilyverifiable conditions under which optimallysparse solutions can be found by concrete, effective computational methods. Such theoretical results inspire a bold perspective on some important practical problems in signal and image processing. Several wellknown signal and image processing problems can be cast as demanding solutions of undetermined systems of equations. Such problems have previously seemed, to many, intractable. There is considerable evidence that these problems often have sparse solutions. Hence, advances in finding sparse solutions to underdetermined systems energizes research on such signal and image processing problems – to striking effect. In this paper we review the theoretical results on sparse solutions of linear systems, empirical
Software agents: An overview
 Knowledge Engineering Review
, 1996
"... Agent software is a rapidly developing area of research. However, the overuse of the word ‘agent ’ has tended to mask the fact that, in reality, there is a truly heterogeneous body of research being carried out under this banner. This overview paper presents a typology of agents. Next, it places age ..."
Abstract

Cited by 404 (5 self)
 Add to MetaCart
Agent software is a rapidly developing area of research. However, the overuse of the word ‘agent ’ has tended to mask the fact that, in reality, there is a truly heterogeneous body of research being carried out under this banner. This overview paper presents a typology of agents. Next, it places agents in context, defines them and then goes on, inter alia, to overview critically the rationales, hypotheses, goals, challenges and stateoftheart demonstrators of the various agent types in our typology. Hence, it attempts to make explicit much of what is usually implicit in the agents literature. It also proceeds to overview some other general issues which pertain to all the types of agents in the typology. This paper largely reviews software agents, and it also contains some strong opinions that are not necessarily widely accepted by the agent community. 1 1
Interactive Control of Avatars Animated with Human Motion Data
, 2002
"... Realtime control of threedimensional avatars is an important problem in the context of computer games and virtual environments. Avatar animation and control is difficult, however, because a large repertoire of avatar behaviors must be made available, and the user must be able to select from this s ..."
Abstract

Cited by 369 (37 self)
 Add to MetaCart
Realtime control of threedimensional avatars is an important problem in the context of computer games and virtual environments. Avatar animation and control is difficult, however, because a large repertoire of avatar behaviors must be made available, and the user must be able to select from this set of behaviors, possibly with a lowdimensional input device. One appealing approach to obtaining a rich set of avatar behaviors is to collect an extended, unlabeled sequence of motion data appropriate to the application. In this paper, we show that such a motion database can be preprocessed for flexibility in behavior and efficient search and exploited for realtime avatar control. Flexibility is created by identifying plausible transitions between motion segments, and efficient search through the resulting graph structure is obtained through clustering. Three interface techniques are demonstrated for controlling avatar motion using this data structure: the user selects from a set of available choices, sketches a path through an environment, or acts out a desired motion in front of a video camera. We demonstrate the flexibility of the approach through four different applications and compare the avatar motion to directly recorded human motion.
An Introduction to Software Agents
, 1997
"... ion and delegation: Agents can be made extensible and composable in ways that common iconic interface objects cannot. Because we can "communicate" with them, they can share our goals, rather than simply process our commands. They can show us how to do things and tell us what went wrong (Mi ..."
Abstract

Cited by 353 (9 self)
 Add to MetaCart
ion and delegation: Agents can be made extensible and composable in ways that common iconic interface objects cannot. Because we can "communicate" with them, they can share our goals, rather than simply process our commands. They can show us how to do things and tell us what went wrong (Miller and Neches 1987). . Flexibility and opportunism: Because they can be instructed at the level of 16 BRADSHAW goals and strategies, agents can find ways to "work around" unforeseen problems and exploit new opportunities as they help solve problems. . Task orientation: Agents can be designed to take the context of the person's tasks and situation into account as they present information and take action. . Adaptivity: Agents can use learning algorithms to continually improve their behavior by noticing recurrent patterns of actions and events. Toward AgentEnabled System Architectures In the future, assistant agents at the user interface and resourcemanaging agents behind the scenes will increas...
The Hero with a Thousand Faces
, 1972
"... Botiingen Foundation, andpttt.!.,.: b % / ,.,;:,c,m B<,.ik.*, second ..."
Abstract

Cited by 353 (0 self)
 Add to MetaCart
Botiingen Foundation, andpttt.!.,.: b % / ,.,;:,c,m B<,.ik.*, second
Wireless Network Information Flow: A Deterministic Approach
, 2009
"... In contrast to wireline networks, not much is known about the flow of information over wireless networks. The main barrier is the complexity of the signal interaction in wireless channels in addition to the noise in the channel. A widely accepted model is the the additive Gaussian channel model, and ..."
Abstract

Cited by 298 (46 self)
 Add to MetaCart
In contrast to wireline networks, not much is known about the flow of information over wireless networks. The main barrier is the complexity of the signal interaction in wireless channels in addition to the noise in the channel. A widely accepted model is the the additive Gaussian channel model, and for this model, the capacity of even a network with a single relay node is open for 30 years. In this paper, we present a deterministic approach to this problem by focusing on the signal interaction rather than the noise. To this end, we propose a deterministic channel model which is analytically simpler than the Gaussian model but still captures two key wireless channel properties of broadcast and superposition. We consider a model for a wireless relay network with nodes connected by such deterministic channels, and present an exact characterization of the endtoend capacity when there is a single source and one or more destinations (all interested in the same information) and an arbitrary number of relay nodes. This result is a natural generalization of the celebrated maxflow mincut theorem for wireline networks. We then use the insights obtained from the analysis of the deterministic model to study information flow for the Gaussian wireless relay network. We present an achievable rate for general Gaussian relay networks and show that it is within a constant number of bits from the cutset bound on the capacity of these networks. This constant depends on the number of nodes in the network, but not the values of the channel gains or the signaltonoise ratios. We show that existing strategies cannot achieve such a constantgap approximation for arbitrary networks and propose a new quantizemapandforward scheme that does. We also give several extensions of the approximation framework including robustness results (through compound channels), halfduplex constraints and ergodic channel variations.
Results 1  10
of
32,057