Results 1  10
of
1,911,347
Quasioptimal multiplication of linear differential operators
 IEEE 53RD ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE
, 2012
"... We show that linear differential operators with polynomial coefficients over a field of characteristic zero can be multiplied in quasioptimal time. This answers an open question raised by van der Hoeven. ..."
Abstract

Cited by 1 (0 self)
 Add to MetaCart
We show that linear differential operators with polynomial coefficients over a field of characteristic zero can be multiplied in quasioptimal time. This answers an open question raised by van der Hoeven.
QuasiOptimal Cardinality . . .
, 2010
"... We examine adaptive finite element methods (AFEM) with any polynomial degree satisfying rather general assumptions on the a posteriori error estimators. We show that several nonresidual estimators satisfy these assumptions. We design an AFEM with single Dörfler marking for the sum of error estimat ..."
Abstract
 Add to MetaCart
estimator and oscillation, prove a contraction property for the socalled total error, namely the scaled sum of energy error and oscillation, and derive quasioptimal decay rates for the total error. We also reexamine the definition and role of oscillation in the approximation class.
Differential privacy . . .
, 2009
"... We show by means of several examples that robust statistical estimators present an excellent starting point for differentially private estimators. Our algorithms use a new paradigm for differentially private mechanisms, which we call ProposeTestRelease (PTR), and for which we give a formal definit ..."
Abstract

Cited by 629 (10 self)
 Add to MetaCart
We show by means of several examples that robust statistical estimators present an excellent starting point for differentially private estimators. Our algorithms use a new paradigm for differentially private mechanisms, which we call ProposeTestRelease (PTR), and for which we give a formal
An iterative method for the solution of the eigenvalue problem of linear differential and integral
, 1950
"... The present investigation designs a systematic method for finding the latent roots and the principal axes of a matrix, without reducing the order of the matrix. It is characterized by a wide field of applicability and great accuracy, since the accumulation of rounding errors is avoided, through the ..."
Abstract

Cited by 525 (0 self)
 Add to MetaCart
the process of "minimized iterations". Moreover, the method leads to a well convergent successive approximation procedure by which the solution of integral equations of the Fredholm type and the solution of the eigenvalue problem of linear differential and integral operators may be accomplished. I.
Parallel Numerical Linear Algebra
, 1993
"... We survey general techniques and open problems in numerical linear algebra on parallel architectures. We first discuss basic principles of parallel processing, describing the costs of basic operations on parallel machines, including general principles for constructing efficient algorithms. We illust ..."
Abstract

Cited by 766 (23 self)
 Add to MetaCart
We survey general techniques and open problems in numerical linear algebra on parallel architectures. We first discuss basic principles of parallel processing, describing the costs of basic operations on parallel machines, including general principles for constructing efficient algorithms. We
Limma: linear models for microarray data
 Bioinformatics and Computational Biology Solutions using R and Bioconductor
, 2005
"... This free opensource software implements academic research by the authors and coworkers. If you use it, please support the project by citing the appropriate journal articles listed in Section 2.1.Contents ..."
Abstract

Cited by 759 (13 self)
 Add to MetaCart
This free opensource software implements academic research by the authors and coworkers. If you use it, please support the project by citing the appropriate journal articles listed in Section 2.1.Contents
An iterative thresholding algorithm for linear inverse problems with a sparsity constraint
, 2008
"... ..."
Using Linear Algebra for Intelligent Information Retrieval
 SIAM REVIEW
, 1995
"... Currently, most approaches to retrieving textual materials from scientific databases depend on a lexical match between words in users' requests and those in or assigned to documents in a database. Because of the tremendous diversity in the words people use to describe the same document, lexical ..."
Abstract

Cited by 672 (18 self)
 Add to MetaCart
Currently, most approaches to retrieving textual materials from scientific databases depend on a lexical match between words in users' requests and those in or assigned to documents in a database. Because of the tremendous diversity in the words people use to describe the same document, lexical methods are necessarily incomplete and imprecise. Using the singular value decomposition (SVD), one can take advantage of the implicit higherorder structure in the association of terms with documents by determining the SVD of large sparse term by document matrices. Terms and documents represented by 200300 of the largest singular vectors are then matched against user queries. We call this retrieval method Latent Semantic Indexing (LSI) because the subspace represents important associative relationships between terms and documents that are not evident in individual documents. LSI is a completely automatic yet intelligent indexing method, widely applicable, and a promising way to improve users...
Lambertian Reflectance and Linear Subspaces
, 2000
"... We prove that the set of all reflectance functions (the mapping from surface normals to intensities) produced by Lambertian objects under distant, isotropic lighting lies close to a 9D linear subspace. This implies that, in general, the set of images of a convex Lambertian object obtained under a wi ..."
Abstract

Cited by 514 (20 self)
 Add to MetaCart
the effects of Lambertian materials as the analog of a convolution. These results allow us to construct algorithms for object recognition based on linear methods as well as algorithms that use convex optimization to enforce nonnegative lighting functions. Finally, we show a simple way to enforce non
GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems
 SIAM J. SCI. STAT. COMPUT
, 1986
"... We present an iterative method for solving linear systems, which has the property ofminimizing at every step the norm of the residual vector over a Krylov subspace. The algorithm is derived from the Arnoldi process for constructing an l2orthogonal basis of Krylov subspaces. It can be considered a ..."
Abstract

Cited by 2046 (40 self)
 Add to MetaCart
We present an iterative method for solving linear systems, which has the property ofminimizing at every step the norm of the residual vector over a Krylov subspace. The algorithm is derived from the Arnoldi process for constructing an l2orthogonal basis of Krylov subspaces. It can be considered
Results 1  10
of
1,911,347