Results 1  10
of
22,974
Quantum and Classical Strong Direct Product Theorems and Optimal TimeSpace Tradeoffs
 SIAM Journal on Computing
, 2004
"... A strong direct product theorem says that if we want to compute k independent instances of a function, using less than k times the resources needed for one instance, then our overall success probability will be exponentially small in k. We establish such theorems for the classical as well as quantum ..."
Abstract

Cited by 66 (12 self)
 Add to MetaCart
A strong direct product theorem says that if we want to compute k independent instances of a function, using less than k times the resources needed for one instance, then our overall success probability will be exponentially small in k. We establish such theorems for the classical as well
Quantum timespace tradeoffs for sorting
 Proceedings of 35th ACM STOC
, 2003
"... We investigate the complexity of sorting in the model of sequential quantum circuits. While it is known that a quantum algorithm based on comparisons alone cannot outperform classical sorting algorithms by more than a constant factor in time complexity, this is wrong in a space bounded setting. We o ..."
Abstract

Cited by 8 (2 self)
 Add to MetaCart
We investigate the complexity of sorting in the model of sequential quantum circuits. While it is known that a quantum algorithm based on comparisons alone cannot outperform classical sorting algorithms by more than a constant factor in time complexity, this is wrong in a space bounded setting. We
WOLF: Quantum direct product theorems for symmetric functions and timespace tradeoffs
 Algorithmica
"... A direct product theorem upperbounds the overall success probability of algorithms for computing many independent instances of a computational problem. We prove a direct product theorem for 2sided error algorithms for symmetric functions in the setting of quantum query complexity, and a stronger d ..."
Abstract

Cited by 1 (1 self)
 Add to MetaCart
direct product theorem for 1sided error algorithms for threshold functions. We also present a quantum algorithm for deciding systems of linear inequalities, and use our direct product theorems to show that the timespace tradeoff of this algorithm is close to optimal.
Simulating Physics with Computers
 SIAM Journal on Computing
, 1982
"... A digital computer is generally believed to be an efficient universal computing device; that is, it is believed able to simulate any physical computing device with an increase in computation time of at most a polynomial factor. This may not be true when quantum mechanics is taken into consideration. ..."
Abstract

Cited by 601 (1 self)
 Add to MetaCart
A digital computer is generally believed to be an efficient universal computing device; that is, it is believed able to simulate any physical computing device with an increase in computation time of at most a polynomial factor. This may not be true when quantum mechanics is taken into consideration
A New Kind of Science
, 2002
"... “Somebody says, ‘You know, you people always say that space is continuous. How do you know when you get to a small enough dimension that there really are enough points in between, that it isn’t just a lot of dots separated by little distances? ’ Or they say, ‘You know those quantum mechanical amplit ..."
Abstract

Cited by 850 (0 self)
 Add to MetaCart
“Somebody says, ‘You know, you people always say that space is continuous. How do you know when you get to a small enough dimension that there really are enough points in between, that it isn’t just a lot of dots separated by little distances? ’ Or they say, ‘You know those quantum mechanical
Results 1  10
of
22,974