• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Tools

Sorted by:
Try your query at:
Semantic Scholar Scholar Academic
Google Bing DBLP
Results 1 - 10 of 715,794
Next 10 →

Approximate Signal Processing

by S. Hamid Nawab, Alan V. Oppenheim, Anantha P. Chandrakasan, Joseph M. Winograd, Jeffrey T. Ludwig , 1997
"... It is increasingly important to structure signal processing algorithms and systems to allow for trading off between the accuracy of results and the utilization of resources in their implementation. In any particular context, there are typically a variety of heuristic approaches to managing these tra ..."
Abstract - Cited by 516 (2 self) - Add to MetaCart
these tradeoffs. One of the objectives of this paper is to suggest that there is the potential for developing a more formal approach, including utilizing current research in Computer Science on Approximate Processing and one of its central concepts, Incremental Refinement. Toward this end, we first summarize a

A Guided Tour to Approximate String Matching

by Gonzalo Navarro - ACM COMPUTING SURVEYS , 1999
"... We survey the current techniques to cope with the problem of string matching allowing errors. This is becoming a more and more relevant issue for many fast growing areas such as information retrieval and computational biology. We focus on online searching and mostly on edit distance, explaining t ..."
Abstract - Cited by 584 (38 self) - Add to MetaCart
We survey the current techniques to cope with the problem of string matching allowing errors. This is becoming a more and more relevant issue for many fast growing areas such as information retrieval and computational biology. We focus on online searching and mostly on edit distance, explaining

A survey of general-purpose computation on graphics hardware

by John D. Owens, David Luebke, Naga Govindaraju, Mark Harris, Jens Krüger, Aaron E. Lefohn, Tim Purcell , 2007
"... The rapid increase in the performance of graphics hardware, coupled with recent improvements in its programmability, have made graphics hardware acompelling platform for computationally demanding tasks in awide variety of application domains. In this report, we describe, summarize, and analyze the l ..."
Abstract - Cited by 545 (18 self) - Add to MetaCart
The rapid increase in the performance of graphics hardware, coupled with recent improvements in its programmability, have made graphics hardware acompelling platform for computationally demanding tasks in awide variety of application domains. In this report, we describe, summarize, and analyze

Finite state Markov-chain approximations to univariate and vector autoregressions

by George Tauchen - Economics Letters , 1986
"... The paper develops a procedure for finding a discrete-valued Markov chain whose sample paths approximate well those of a vector autoregression. The procedure has applications in those areas of economics, finance, and econometrics where approximate solutions to integral equations are required. 1. ..."
Abstract - Cited by 472 (0 self) - Add to MetaCart
The paper develops a procedure for finding a discrete-valued Markov chain whose sample paths approximate well those of a vector autoregression. The procedure has applications in those areas of economics, finance, and econometrics where approximate solutions to integral equations are required. 1.

Loopy Belief Propagation for Approximate Inference: An Empirical Study

by Kevin P. Murphy, Yair Weiss, Michael I. Jordan - In Proceedings of Uncertainty in AI , 1999
"... Recently, researchers have demonstrated that "loopy belief propagation" --- the use of Pearl's polytree algorithm in a Bayesian network with loops --- can perform well in the context of error-correcting codes. The most dramatic instance of this is the near Shannon-limit performa ..."
Abstract - Cited by 680 (18 self) - Add to MetaCart
-limit performance of "Turbo Codes" --- codes whose decoding algorithm is equivalent to loopy belief propagation in a chain-structured Bayesian network. In this paper we ask: is there something special about the error-correcting code context, or does loopy propagation work as an approximate

Training Support Vector Machines: an Application to Face Detection

by Edgar Osuna, Robert Freund, Federico Girosi , 1997
"... We investigate the application of Support Vector Machines (SVMs) in computer vision. SVM is a learning technique developed by V. Vapnik and his team (AT&T Bell Labs.) that can be seen as a new method for training polynomial, neural network, or Radial Basis Functions classifiers. The decision sur ..."
Abstract - Cited by 728 (1 self) - Add to MetaCart
We investigate the application of Support Vector Machines (SVMs) in computer vision. SVM is a learning technique developed by V. Vapnik and his team (AT&T Bell Labs.) that can be seen as a new method for training polynomial, neural network, or Radial Basis Functions classifiers. The decision

Greedy Function Approximation: A Gradient Boosting Machine

by Jerome H. Friedman - Annals of Statistics , 2000
"... Function approximation is viewed from the perspective of numerical optimization in function space, rather than parameter space. A connection is made between stagewise additive expansions and steepest{descent minimization. A general gradient{descent \boosting" paradigm is developed for additi ..."
Abstract - Cited by 951 (12 self) - Add to MetaCart
Function approximation is viewed from the perspective of numerical optimization in function space, rather than parameter space. A connection is made between stagewise additive expansions and steepest{descent minimization. A general gradient{descent \boosting" paradigm is developed

The Protection of Information in Computer Systems

by Jerome H. Saltzer, Michael D. Schroeder , 1975
"... This tutorial paper explores the mechanics of protecting computer-stored information from unauthorized use or modification. It concentrates on those architectural structures--whether hardware or software--that are necessary to support information protection. The paper develops in three main sections ..."
Abstract - Cited by 815 (2 self) - Add to MetaCart
This tutorial paper explores the mechanics of protecting computer-stored information from unauthorized use or modification. It concentrates on those architectural structures--whether hardware or software--that are necessary to support information protection. The paper develops in three main

Sparse Bayesian Learning and the Relevance Vector Machine

by Michael E. Tipping, Alex Smola , 2001
"... This paper introduces a general Bayesian framework for obtaining sparse solutions to regression and classication tasks utilising models linear in the parameters. Although this framework is fully general, we illustrate our approach with a particular specialisation that we denote the `relevance vec ..."
Abstract - Cited by 958 (5 self) - Add to MetaCart
vector machine' (RVM), a model of identical functional form to the popular and state-of-the-art `support vector machine' (SVM). We demonstrate that by exploiting a probabilistic Bayesian learning framework, we can derive accurate prediction models which typically utilise dramatically fewer

Ad-hoc On-Demand Distance Vector Routing

by Charles E. Perkins, Elizabeth M. Royer - IN PROCEEDINGS OF THE 2ND IEEE WORKSHOP ON MOBILE COMPUTING SYSTEMS AND APPLICATIONS , 1997
"... An ad-hoc network is the cooperative engagement of a collection of mobile nodes without the required intervention of any centralized access point or existing infrastructure. In this paper we present Ad-hoc On Demand Distance Vector Routing (AODV), a novel algorithm for the operation of such ad-hoc n ..."
Abstract - Cited by 3167 (15 self) - Add to MetaCart
An ad-hoc network is the cooperative engagement of a collection of mobile nodes without the required intervention of any centralized access point or existing infrastructure. In this paper we present Ad-hoc On Demand Distance Vector Routing (AODV), a novel algorithm for the operation of such ad
Next 10 →
Results 1 - 10 of 715,794
Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University