Results 1  10
of
560,314
Proximal Newtontype methods for convex optimization
"... We seek to solve convex optimization problems in composite form: minimize x∈R n f(x): = g(x) + h(x), where g is convex and continuously differentiable and h: R n → R is a convex but not necessarily differentiable function whose proximal mapping can be evaluated efficiently. We derive a generalizatio ..."
Abstract

Cited by 15 (0 self)
 Add to MetaCart
generalization of Newtontype methods to handle such convex but nonsmooth objective functions. We prove such methods are globally convergent and achieve superlinear rates of convergence in the vicinity of an optimal solution. We also demonstrate the performance of these methods using problems of relevance
Convergence analysis of inexact proximal Newtontype methods
"... We study inexact proximal Newtontype methods to solve convex optimization problems in composite form: minimize x∈Rn f(x): = g(x) + h(x), where g is convex and continuously differentiable and h: Rn → R is a convex but not necessarily differentiable function whose proximal mapping can be evaluated ef ..."
Abstract
 Add to MetaCart
We study inexact proximal Newtontype methods to solve convex optimization problems in composite form: minimize x∈Rn f(x): = g(x) + h(x), where g is convex and continuously differentiable and h: Rn → R is a convex but not necessarily differentiable function whose proximal mapping can be evaluated
Convex Analysis
, 1970
"... In this book we aim to present, in a unified framework, a broad spectrum of mathematical theory that has grown in connection with the study of problems of optimization, equilibrium, control, and stability of linear and nonlinear systems. The title Variational Analysis reflects this breadth. For a lo ..."
Abstract

Cited by 5350 (67 self)
 Add to MetaCart
In this book we aim to present, in a unified framework, a broad spectrum of mathematical theory that has grown in connection with the study of problems of optimization, equilibrium, control, and stability of linear and nonlinear systems. The title Variational Analysis reflects this breadth. For a
PROXIMAL NEWTONTYPE METHODS FOR MINIMIZING COMPOSITE FUNCTIONS
"... Abstract. We generalize Newtontype methods for minimizing smooth functions to handle a sum of two convex functions: a smooth function and a nonsmooth function with a simple proximal mapping. We show that the resulting proximal Newtontype methods inherit the desirable convergence behavior of Newton ..."
Abstract

Cited by 8 (1 self)
 Add to MetaCart
Abstract. We generalize Newtontype methods for minimizing smooth functions to handle a sum of two convex functions: a smooth function and a nonsmooth function with a simple proximal mapping. We show that the resulting proximal Newtontype methods inherit the desirable convergence behavior
NewtonType Methods With Generalized Distances For Constrained Optimization
, 1997
"... We consider a class of interior point algorithms for minimizing a twice continuously differentiable function over a closed convex set with nonempty interior. On one hand, our algorithms can be viewed as an approximate version of the generalized proximal point methods and, on the other hand, as an ex ..."
Abstract

Cited by 6 (3 self)
 Add to MetaCart
, as an extension of unconstrained Newtontype methods to the constrained case. Each step consists of solving a strongly convex unconstrained program followed by a onedimensional search along either a line or a curve segment in the interior of the feasible set. The information about the feasible set is contained
Just Relax: Convex Programming Methods for Identifying Sparse Signals in Noise
, 2006
"... This paper studies a difficult and fundamental problem that arises throughout electrical engineering, applied mathematics, and statistics. Suppose that one forms a short linear combination of elementary signals drawn from a large, fixed collection. Given an observation of the linear combination that ..."
Abstract

Cited by 496 (2 self)
 Add to MetaCart
. This paper studies a method called convex relaxation, which attempts to recover the ideal sparse signal by solving a convex program. This approach is powerful because the optimization can be completed in polynomial time with standard scientific software. The paper provides general conditions which ensure
SNOPT: An SQP Algorithm For LargeScale Constrained Optimization
, 2002
"... Sequential quadratic programming (SQP) methods have proved highly effective for solving constrained optimization problems with smooth nonlinear functions in the objective and constraints. Here we consider problems with general inequality constraints (linear and nonlinear). We assume that first deriv ..."
Abstract

Cited by 582 (23 self)
 Add to MetaCart
Sequential quadratic programming (SQP) methods have proved highly effective for solving constrained optimization problems with smooth nonlinear functions in the objective and constraints. Here we consider problems with general inequality constraints (linear and nonlinear). We assume that first
Interior Point Methods in Semidefinite Programming with Applications to Combinatorial Optimization
 SIAM Journal on Optimization
, 1993
"... We study the semidefinite programming problem (SDP), i.e the problem of optimization of a linear function of a symmetric matrix subject to linear equality constraints and the additional condition that the matrix be positive semidefinite. First we review the classical cone duality as specialized to S ..."
Abstract

Cited by 557 (12 self)
 Add to MetaCart
to SDP. Next we present an interior point algorithm which converges to the optimal solution in polynomial time. The approach is a direct extension of Ye's projective method for linear programming. We also argue that most known interior point methods for linear programs can be transformed in a
Inverse Acoustic and Electromagnetic Scattering Theory, Second Edition
, 1998
"... Abstract. This paper is a survey of the inverse scattering problem for timeharmonic acoustic and electromagnetic waves at fixed frequency. We begin by a discussion of “weak scattering ” and Newtontype methods for solving the inverse scattering problem for acoustic waves, including a brief discussi ..."
Abstract

Cited by 1072 (45 self)
 Add to MetaCart
Abstract. This paper is a survey of the inverse scattering problem for timeharmonic acoustic and electromagnetic waves at fixed frequency. We begin by a discussion of “weak scattering ” and Newtontype methods for solving the inverse scattering problem for acoustic waves, including a brief
Global Optimization with Polynomials and the Problem of Moments
 SIAM Journal on Optimization
, 2001
"... We consider the problem of finding the unconstrained global minimum of a realvalued polynomial p(x) : R R, as well as the global minimum of p(x), in a compact set K defined by polynomial inequalities. It is shown that this problem reduces to solving an (often finite) sequence of convex linear mat ..."
Abstract

Cited by 569 (47 self)
 Add to MetaCart
We consider the problem of finding the unconstrained global minimum of a realvalued polynomial p(x) : R R, as well as the global minimum of p(x), in a compact set K defined by polynomial inequalities. It is shown that this problem reduces to solving an (often finite) sequence of convex linear
Results 1  10
of
560,314