Results 1  10
of
138,461
Properties of Stochastic Kronecker Graph
, 2012
"... The stochastic Kronecker Graph model can generate large random graph that closely resembles many real world networks. For example, the output graph has a heavytailed degree distribution, has a (low) diameter that effectively remains constant over time and obeys the socalled densification power law ..."
Abstract
 Add to MetaCart
realization? Here we try to answer the above questions. In the first phase, we bound the expected values of the aforementioned features from above. Next we establish the sufficient conditions to generate stochastic Kronecker graph with a wide range of interesting properties. Finally we show two phase
Community detection in graphs
, 2009
"... The modern science of networks has brought significant advances to our understanding of complex systems. One of the most relevant features of graphs representing real systems is community structure, or clustering, i. e. the organization of vertices in clusters, with many edges joining vertices of th ..."
Abstract

Cited by 801 (1 self)
 Add to MetaCart
The modern science of networks has brought significant advances to our understanding of complex systems. One of the most relevant features of graphs representing real systems is community structure, or clustering, i. e. the organization of vertices in clusters, with many edges joining vertices
Stochastic Perturbation Theory
, 1988
"... . In this paper classical matrix perturbation theory is approached from a probabilistic point of view. The perturbed quantity is approximated by a firstorder perturbation expansion, in which the perturbation is assumed to be random. This permits the computation of statistics estimating the variatio ..."
Abstract

Cited by 886 (35 self)
 Add to MetaCart
. In this paper classical matrix perturbation theory is approached from a probabilistic point of view. The perturbed quantity is approximated by a firstorder perturbation expansion, in which the perturbation is assumed to be random. This permits the computation of statistics estimating the variation in the perturbed quantity. Up to the higherorder terms that are ignored in the expansion, these statistics tend to be more realistic than perturbation bounds obtained in terms of norms. The technique is applied to a number of problems in matrix perturbation theory, including least squares and the eigenvalue problem. Key words. perturbation theory, random matrix, linear system, least squares, eigenvalue, eigenvector, invariant subspace, singular value AMS(MOS) subject classifications. 15A06, 15A12, 15A18, 15A52, 15A60 1. Introduction. Let A be a matrix and let F be a matrix valued function of A. Two principal problems of matrix perturbation theory are the following. Given a matrix E, pr...
Stochastic kronecker graphs
 Proceedings of the 5th Workshop on Algorithms and Models for the WebGraph
, 2007
"... A random graph model based on Kronecker products of probability matrices has been recently proposed as a generative model for largescale realworld networks such as the web. This model simultaneously captures several wellknown properties of realworld networks; in particular, it gives rise to a he ..."
Abstract

Cited by 26 (2 self)
 Add to MetaCart
heavytailed degree distribution, has a low diameter, and obeys the densification power law. Most properties of Kronecker products of graphs (such as connectivity and diameter) are only rigorously analyzed in the deterministic case. In this paper, we study the basic properties of stochastic Kronecker
Using Bayesian networks to analyze expression data
 Journal of Computational Biology
, 2000
"... DNA hybridization arrays simultaneously measure the expression level for thousands of genes. These measurements provide a “snapshot ” of transcription levels within the cell. A major challenge in computational biology is to uncover, from such measurements, gene/protein interactions and key biologica ..."
Abstract

Cited by 1076 (18 self)
 Add to MetaCart
of joint multivariate probability distributions that captures properties of conditional independence between variables. Such models are attractive for their ability to describe complex stochastic processes and because they provide a clear methodology for learning from (noisy) observations. We start
Modeling and simulation of genetic regulatory systems: A literature review
 JOURNAL OF COMPUTATIONAL BIOLOGY
, 2002
"... In order to understand the functioning of organisms on the molecular level, we need to know which genes are expressed, when and where in the organism, and to which extent. The regulation of gene expression is achieved through genetic regulatory systems structured by networks of interactions between ..."
Abstract

Cited by 729 (15 self)
 Add to MetaCart
for the modeling and simulation of genetic regulatory networks will be indispensable. This paper reviews formalisms that have been employed in mathematical biology and bioinformatics to describe genetic regulatory systems, in particular directed graphs, Bayesian networks, Boolean networks and their generalizations
Consensus and cooperation in networked multiagent systems
 PROCEEDINGS OF THE IEEE
"... This paper provides a theoretical framework for analysis of consensus algorithms for multiagent networked systems with an emphasis on the role of directed information flow, robustness to changes in network topology due to link/node failures, timedelays, and performance guarantees. An overview of ..."
Abstract

Cited by 772 (2 self)
 Add to MetaCart
of basic concepts of information consensus in networks and methods of convergence and performance analysis for the algorithms are provided. Our analysis framework is based on tools from matrix theory, algebraic graph theory, and control theory. We discuss the connections between consensus problems
Results 1  10
of
138,461